VALUE AT THE SPINDLE ${ }^{\circ}$

Solid Carbide Tools

HIGH PERFORMANCE CARBIDE DRILLS

Series 146U / 136U Flat Bottom Drills

HIGH PERFORMANCE CARBIDE DRILLS

The key features designed into the Hi-PerCarb ${ }^{\circledR}$ Series 146 U and 136 U Drills allow the product to offer application benefits not only beyond that of standard carbide drills, but also other High Performance drills. Each feature of the Hi-PerCarb ${ }^{\circledR}$ Series 146 U and 136 U Drills was uniquely engineered as a solution towards addressing the issues commonly encountered during high production drilling. SERIES 146U / 136U
(A)

- a unique coolant channel design allows repositioning of the trailing margins for improved stability over conventional two and four margin drills
- eccentric style clearance reduces margin contact with the workpiece without reducing strength
(B)

END GEOMETRY

- the primary only relief allows the trailing margins to help stabilize the drill up to three times faster than conventional designs
- high shear corner geometry minimizes exit bur
- computer controlled edge hone protects against edge chipping in difficult applications
(C)

COOLANT CHANNELS

- the two-channel design provides additional coolant in the hole when thru-tool coolant is not available
(D)

COATING AND CARBIDE

- proprietary SGS Ti-NAMITE ${ }^{-}$-X coating and post-coat polishing combine to minimize material adhesion and maximize wear resistance in a wide range of workpiece materials
- all Series 146 U and 136 U drills are manufactured from lab certified premium quality carbide

PERFORMANCE. PRECISION. PASSION. HI-PERCARB ${ }^{\circledR}$ SERIES 146U/136U FLAT BOTTOM DRILLS

PERFORMANCE.

HOLE
 DIAMETER VARIATION
 4140 alloy steel / 19 HRc 2700 rpm / 25.4 ipm straight blind holes with flood coolant
 CMM diameter measurement of ten random holes shows the size variation produced by the Series 136U is ten times better than the competition.

TOOL LIFE

4140 alloy steel / 19 HRc 2700 rpm / 25.4 ipm straight blind holes with flood coolant
Tool life testing was performed until each drill exhibited sufficient damage to stop the test. Results show the Series 136 U lasts 40 percent longer than competitor 2 and 250 percent longer than competitor 1.

WALL

STRAIGHTNESS

4140 alloy steel / 19 HRc 2700 rpm / 25.4 ipm 30° angle with flood coolant

Wall straightness of holes drilled on a 30° angle show the Series 136 U produced 39 percent less deflection than competitor 3 and 57 percent less than competitor 2. During this test all tools were extended from the holder at an equal amount.

FRACTIONAL \& METRIC
Series 146U
Common
$5 \Sigma \pi D$
|nternal
Point Angle
Margins

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminatest hen eeed for
spot driling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge eatigue allowing for
increased feed rates
- Recommended for
materials ≤ 56 HRc
(≤ 577 Bhn)

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	LELUTE	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{(\mathrm{TX})}{\text { Ti-NAMITE }}$
0.1181	$3,000 \mathrm{~mm}$		6,0	55,0	13,0	9,0	34,0	67705
0.1220	$3,100 \mathrm{~mm}$		6,0	55,0	14,0	9,0	34,0	67706
0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	55,0	14,0	10,0	34,0	58800
0.1260	$3,200 \mathrm{~mm}$		6,0	55,0	14,0	10,0	34,0	67707
0.1299	$3,300 \mathrm{~mm}$		6,0	55,0	15,0	10,0	34,0	67708
0.1339	$3,400 \mathrm{~mm}$		6,0	55,0	15,0	10,0	34,0	67709
0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	55,0	16,0	10,0	34,0	58801
0.1378	3,500 mm		6,0	55,0	16,0	11,0	34,0	67710
0.1405	3,569 mm	\#28	6,0	55,0	16,0	11,0	34,0	58802
0.1406	3,571 mm	9/64	6,0	55,0	16,0	11,0	34,0	58803
0.1417	3,600 mm		6,0	55,0	16,0	11,0	34,0	67711
0.1457	3,700 mm		6,0	60,0	17,0	11,0	34,0	67712
0.1470	3,734 mm	\#26	6,0	60,0	17,0	11,0	34,0	58804
0.1495	3,797 mm	\#25	6,0	60,0	17,0	11,0	34,0	58805
0.1496	$3,800 \mathrm{~mm}$		6,0	60,0	17,0	11,0	34,0	67713
0.1520	3,861 mm	\#24	6,0	60,0	17,0	12,0	34,0	58806
0.1535	3,900 mm		6,0	60,0	18,0	12,0	34,0	67714
0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	60,0	18,0	12,0	34,0	58807
0.1570	$3,988 \mathrm{~mm}$	\#22	6,0	60,0	18,0	12,0	34,0	58808
0.1575	4,000 mm		6,0	60,0	18,0	12,0	34,0	67715
0.1590	$4,039 \mathrm{~mm}$	\#21	6,0	60,0	18,0	12,0	34,0	58809
0.1610	$4,089 \mathrm{~mm}$	\#20	6,0	60,0	18,0	12,0	34,0	58810
0.1614	$4,100 \mathrm{~mm}$		6,0	60,0	18,0	12,0	34,0	67716
0.1654	$4,200 \mathrm{~mm}$		6,0	60,0	19,0	13,0	34,0	67717
0.1693	$4,300 \mathrm{~mm}$		6,0	60,0	19,0	13,0	34,0	67718
0.1719	4,366 mm	11/64	6,0	60,0	20,0	13,0	34,0	58811
0.1732	$4,400 \mathrm{~mm}$		6,0	60,0	20,0	13,0	34,0	67719
0.1770	$4,496 \mathrm{~mm}$	\#16	6,0	60,0	20,0	13,0	34,0	58812
0.1772	4,500 mm		6,0	60,0	20,0	14,0	34,0	67720
0.1811	$4,600 \mathrm{~mm}$		6,0	60,0	21,0	14,0	34,0	67721
0.1850	4,699 mm	\#13	6,0	60,0	21,0	14,0	34,0	58813
0.1875	4,763 mm	3/16	6,0	60,0	21,0	14,0	34,0	58814
0.1890	$4,801 \mathrm{~mm}$	\#12	6,0	65,0	22,0	14,0	33,0	58815
0.1929	$4,900 \mathrm{~mm}$		6,0	65,0	22,0	15,0	33,0	67724
0.1935	$4,915 \mathrm{~mm}$	\#10	6,0	65,0	22,0	15,0	33,0	58816
0.1969	$5,000 \mathrm{~mm}$		6,0	65,0	23,0	15,0	33,0	67725
0.2008	$5,100 \mathrm{~mm}$		6,0	65,0	23,0	15,0	33,0	67726
0.2010	$5,105 \mathrm{~mm}$	\#7	6,0	65,0	23,0	15,0	33,0	58817

TOLERANCES (inch)
s. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=\mathrm{h}_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)

≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

146U 3xD
FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{gathered} \text { METRIC } \\ \text { DC } \end{gathered}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \end{aligned}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { IS } \end{gathered}$	$\underset{(\mathrm{TX})}{\text { Ti-NAMITE}-X}$
0.2031	$5,159 \mathrm{~mm}$	13/64	6,0	65,0	23,0	15,0	33,0	58818
0.2047	$5,200 \mathrm{~mm}$		6,0	65,0	23,0	16,0	33,0	67727
0.2087	$5,300 \mathrm{~mm}$		6,0	65,0	24,0	16,0	33,0	67728
0.2090	5,309 mm	\#4	6,0	65,0	24,0	16,0	33,0	58819
0.2126	$5,400 \mathrm{~mm}$		6,0	65,0	24,0	16,0	33,0	67729
0.2130	$5,410 \mathrm{~mm}$	\#3	6,0	65,0	24,0	16,0	33,0	58820
0.2165	5,500 mm		6,0	65,0	25,0	16,0	33,0	67730
0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	65,0	25,0	17,0	33,0	58821
0.2205	$5,600 \mathrm{~mm}$		6,0	65,0	25,0	17,0	33,0	67731
0.2244	5,700 mm		6,0	65,0	26,0	17,0	33,0	67732
0.2283	$5,800 \mathrm{~mm}$		6,0	65,0	26,0	17,0	33,0	67733
0.2323	$5,900 \mathrm{~mm}$		6,0	65,0	27,0	18,0	33,0	67734
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	65,0	27,0	18,0	33,0	58822
0.2362	6,000 mm		6,0	65,0	27,0	18,0	33,0	67735
0.2402	6,100 mm		8,0	70,0	28,0	19,0	34,0	67736
0.2441	6,200 mm		8,0	70,0	28,0	19,0	34,0	67737
0.2461	6,250 mm		8,0	70,0	28,0	19,0	34,0	67738
0.2480	6,300 mm		8,0	70,0	28,0	19,0	34,0	67739
0.2500	6,350 mm	1/4 E \#0	8,0	70,0	29,0	19,0	34,0	58823
0.2520	6,400 mm		8,0	70,0	29,0	19,0	34,0	67740
0.2559	6,500 mm		8,0	70,0	29,0	19,0	34,0	67741
0.2570	6,528 mm	F	8,0	70,0	29,0	20,0	34,0	58824
0.2598	6,600 mm		8,0	70,0	30,0	20,0	34,0	67742
0.2638	6,700 mm		8,0	70,0	30,0	20,0	34,0	67743
0.2656	6,746 mm	17/64	8,0	70,0	30,0	20,0	34,0	58825
0.2677	6,800 mm		8,0	70,0	31,0	20,0	34,0	67744
0.2717	6,900 mm		8,0	70,0	31,0	21,0	34,0	67745
0.2720	6,909 mm	I	8,0	70,0	31,0	21,0	34,0	58826
0.2756	7,000 mm		8,0	75,0	32,0	21,0	34,0	67746
0.2795	7,100 mm		8,0	75,0	32,0	21,0	34,0	67747
0.2812	7,142 mm	9/32	8,0	75,0	32,0	21,0	34,0	58827
0.2835	7,200 mm		8,0	75,0	32,0	22,0	34,0	67748
0.2854	$7,250 \mathrm{~mm}$		8,0	75,0	33,0	22,0	34,0	67749
0.2874	7,300 mm		8,0	75,0	33,0	22,0	34,0	67750
0.2913	$7,400 \mathrm{~mm}$		8,0	75,0	33,0	22,0	34,0	67751
0.2953	$7,500 \mathrm{~mm}$		8,0	75,0	34,0	23,0	34,0	67752
0.2969	$7,541 \mathrm{~mm}$	19/64	8,0	75,0	34,0	23,0	34,0	58828
0.2992	7,600 mm		8,0	75,0	34,0	23,0	34,0	67753
0.3031	7,700 mm		8,0	75,0	35,0	23,0	34,0	67754
0.3071	7,800 mm		8,0	75,0	35,0	23,0	34,0	67755
0.3110	7,900 mm		8,0	75,0	36,0	24,0	34,0	67756
0.3125	7,938 mm	5/16	8,0	75,0	36,0	24,0	34,0	58829
0.3150	$8,000 \mathrm{~mm}$		8,0	75,0	36,0	24,0	34,0	67757
0.3189	8,100 mm		10,0	80,0	36,0	24,0	34,0	67758
0.3228	$8,200 \mathrm{~mm}$		10,0	80,0	37,0	25,0	34,0	67759
0.3268	8,300 mm		10,0	80,0	37,0	25,0	34,0	67760
							ontinu	on next page

FRACTIONAL \& METRIC
Series 146U

Common

Internal
Coolant

Point Angle

146U 3xD

FRACTIONAL \& METRIC SERIES

- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
- Specialized selfcentering notched point eliminates the need for spot drilling decreasing thrust and deflection
- Engineered edge protection improves edge strength and reduces edge fatigue allowing for increased feed rates
- Recommended for materials ≤ 56 HRc (≤ 577 Bhn)

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \\ & \text { LCF } \end{aligned}$	USABLE LENGTH LU	SHANK LENGTH LS	$\begin{aligned} & \text { Ti-NAMITE® }- \text { X } \\ & \text { (TX) } \end{aligned}$
0.3281	8,334 mm	21/64	10,0	80,0	38,0	25,0	34,0	58830
0.3307	8,400 mm		10,0	80,0	38,0	25,0	34,0	67761
0.3320	$8,433 \mathrm{~mm}$	0	10,0	80,0	38,0	25,0	34,0	58831
0.3346	8,500 mm		10,0	80,0	38,0	25,0	34,0	67762
0.3386	8,600 mm		10,0	80,0	39,0	26,0	34,0	67763
0.3425	8,700 mm		10,0	80,0	39,0	26,0	34,0	67764
0.3438	8,733 mm	11/32	10,0	80,0	39,0	26,0	34,0	58832
0.3465	8,800 mm		10,0	80,0	40,0	26,0	34,0	67765
0.3504	8,900 mm		10,0	80,0	40,0	27,0	34,0	67766
0.3543	9,000 mm		10,0	80,0	40,0	27,0	34,0	67767
0.3583	9,100 mm		10,0	80,0	41,0	27,0	34,0	67768
0.3594	9,129 mm	23/64	10,0	80,0	41,0	27,0	34,0	58833
0.3622	9,200 mm		10,0	80,0	41,0	28,0	35,0	67769
0.3661	9,300 mm		10,0	85,0	42,0	28,0	35,0	67770
0.3680	9,347 mm	U	10,0	85,0	42,0	28,0	35,0	58834
0.3701	9,400 mm		10,0	85,0	42,0	28,0	35,0	67771
0.3740	9,500 mm		10,0	85,0	43,0	28,0	35,0	67772
0.3750	9,525 mm	3/8	10,0	85,0	43,0	29,0	35,0	58835
0.3780	9,600 mm		10,0	85,0	43,0	29,0	35,0	67773
0.3819	9,700 mm		10,0	85,0	44,0	29,0	35,0	67774
0.3858	9,800 mm		10,0	85,0	44,0	29,0	35,0	67775
0.3898	9,900 mm		10,0	85,0	45,0	30,0	35,0	67776
0.3906	9,921 mm	25/64	10,0	85,0	45,0	30,0	35,0	58836
0.3937	10,000 mm		10,0	85,0	45,0	30,0	35,0	67777
0.3970	$10,084 \mathrm{~mm}$	X	12,0	90,0	46,0	31,0	36,0	58837
0.3976	10,100 mm		12,0	90,0	46,0	31,0	36,0	67778
0.4016	10,200 mm		12,0	90,0	46,0	31,0	36,0	67779
0.4040	10,262 mm	Y	12,0	90,0	46,0	31,0	36,0	58838
0.4055	$10,300 \mathrm{~mm}$		12,0	90,0	46,0	31,0	36,0	67780
0.4062	10,317 mm	13/32	12,0	90,0	46,0	31,0	36,0	58839
0.4094	$10,400 \mathrm{~mm}$		12,0	90,0	47,0	31,0	36,0	67781
0.4134	$10,500 \mathrm{~mm}$		12,0	90,0	47,0	32,0	36,0	67782
0.4173	10,600 mm		12,0	90,0	48,0	32,0	36,0	67783
0.4213	10,700 mm		12,0	90,0	48,0	32,0	36,0	67784
0.4219	$10,716 \mathrm{~mm}$	27/64	12,0	90,0	48,0	32,0	36,0	58840
0.4252	10,800 mm		12,0	90,0	49,0	32,0	36,0	67785
0.4291	10,900 mm		12,0	90,0	49,0	33,0	36,0	67786
0.4331	11,000 mm		12,0	95,0	50,0	33,0	36,0	67787

TOLERANCES (inch)
<. 1181 DIAMETER
DC = +.00008/+. 00047 DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON = h_{6}
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC = +.00028/+.00098 DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=\mathrm{h}_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGHTEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \end{aligned}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \end{gathered}$ LS	$\underset{(T X)}{\text { Ti-NAMITE }}$
0.4370	11,100 mm		12,0	95,0	50,0	33,0	36,0	67788
0.4375	11,113 mm	7/16	12,0	95,0	50,0	33,0	36,0	58841
0.4409	$11,200 \mathrm{~mm}$		12,0	95,0	50,0	34,0	36,0	67789
0.4449	$11,300 \mathrm{~mm}$		12,0	95,0	51,0	34,0	36,0	67790
0.4488	$11,400 \mathrm{~mm}$		12,0	95,0	51,0	34,0	36,0	67791
0.4528	11,500 mm		12,0	95,0	52,0	35,0	36,0	67792
0.4531	11,509 mm	29/64	12,0	95,0	52,0	35,0	36,0	58842
0.4567	$11,600 \mathrm{~mm}$		12,0	95,0	52,0	35,0	36,0	67793
0.4606	11,700 mm		12,0	95,0	53,0	35,0	36,0	67794
0.4646	$11,800 \mathrm{~mm}$		12,0	95,0	53,0	35,0	36,0	67795
0.4685	$11,900 \mathrm{~mm}$		12,0	95,0	54,0	36,0	36,0	67796
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	95,0	54,0	36,0	36,0	58843
0.4724	$12,000 \mathrm{~mm}$		12,0	95,0	54,0	36,0	36,0	67797
0.4844	12,304 mm	31/64	14,0	105,0	55,0	37,0	37,0	58844
0.4921	$12,500 \mathrm{~mm}$		14,0	105,0	56,0	37,0	37,0	67798
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	105,0	57,0	38,0	37,0	58845
0.5039	$12,800 \mathrm{~mm}$		14,0	105,0	58,0	38,0	37,0	67799
0.5118	$13,000 \mathrm{~mm}$		14,0	105,0	58,0	39,0	37,0	67800
0.5156	13,096 mm	33/64	14,0	105,0	59,0	39,0	37,0	58846
0.5312	13,492 mm	17/32	14,0	105,0	61,0	40,0	37,0	58847
0.5315	13,500 mm		14,0	105,0	61,0	41,0	37,0	67801
0.5469	13,891 mm	35/64	14,0	105,0	63,0	42,0	37,0	58848
0.5512	$14,000 \mathrm{~mm}$		14,0	105,0	63,0	42,0	37,0	67802
0.5625	$14,288 \mathrm{~mm}$	9/16	16,0	115,0	64,0	43,0	38,0	58849
0.5709	14,500 mm		16,0	115,0	65,0	44,0	38,0	67803
0.5781	14,684 mm	37/64	16,0	115,0	66,0	44,0	38,0	58850
0.5906	15,000 mm		16,0	115,0	68,0	45,0	38,0	67804
0.5938	15,083 mm	19/32	16,0	115,0	68,0	45,0	38,0	58851
0.6094	$15,479 \mathrm{~mm}$	39/64	16,0	115,0	70,0	46,0	38,0	58852
0.6102	15,500 mm		16,0	115,0	70,0	46,0	38,0	67805
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	115,0	71,0	48,0	38,0	58853
0.6299	$16,000 \mathrm{~mm}$		16,0	115,0	72,0	48,0	38,0	67806
0.6406	$16,271 \mathrm{~mm}$	41/64	18,0	130,0	73,0	49,0	44,0	58854
0.6496	16,500 mm		18,0	130,0	74,0	49,0	44,0	67807
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	130,0	75,0	50,0	44,0	58855
0.6693	$17,000 \mathrm{~mm}$		18,0	130,0	77,0	51,0	44,0	67808
0.6719	17,066 mm	43/64	18,0	130,0	77,0	51,0	44,0	58856
0.6875	17,463 mm	11/16	18,0	130,0	79,0	52,0	44,0	58857
0.6890	$17,500 \mathrm{~mm}$		18,0	130,0	79,0	53,0	44,0	67809
0.7031	$17,859 \mathrm{~mm}$	45/64	18,0	130,0	80,0	54,0	44,0	58858
0.7087	18,000 mm		18,0	130,0	81,0	54,0	44,0	67810
0.7188	18,258 mm	23/32	20,0	140,0	82,0	55,0	45,0	58859
0.7283	18,500 mm		20,0	140,0	83,0	55,0	45,0	67811
0.7344	18,654 mm	47/64	20,0	140,0	84,0	56,0	45,0	58860
0.7480	19,000 mm		20,0	140,0	85,0	57,0	45,0	67812
0.7500	19,050 mm	3/4	20,0	140,0	86,0	57,0	45,0	58861
							continued	on next page

\square
Common

Internal
Point Angle
Margins
五

Fractional \& Metric

146U 3xD
FRACTIONAL \& METRIC SERIES

- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
- Specialized selfcentering notched point eliminates the need for spot drilling decreasing thrust and deflection
- Engineered edge protection improves edge strength and reduces edge fatigue allowing for increased feed rates
- Recommended for materials ≤ 56 HRc (≤ 577 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	METRIC DC	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL Length OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \\ \text { LCF } \end{gathered}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{(\mathrm{TX})}{\text { Ti-NAMIT }{ }^{-} \text {-X }}$
0.7656	19,446 mm	49/64	20,0	140,0	88,0	58,0	45,0	58862
0.7677	19,500 mm		20,0	140,0	88,0	58,0	45,0	67813
0.7812	19,842 mm	25/32	20,0	140,0	89,0	60,0	45,0	58863
0.7874	20,000 mm		20,0	140,0	90,0	60,0	45,0	67814
0.7969	20,241 mm	51/64	22,0	150,0	91,0	61,0	52,0	58864
0.8071	20,500 mm		22,0	150,0	92,0	62,0	52,0	67815
0.8125	20,638 mm	13/16	22,0	150,0	93,0	62,0	52,0	58865

TOLERANCES (inch)
S. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$
DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$
DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC = +.00028/+.00098
DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 DIAMETER
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$
DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON = h_{6}
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=\mathrm{h}_{6}$
>18-30 DIAMETER
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS

STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent

information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

TOLERANCES (inch)	inch \% mm								EDP NO.
s. 1181 DIAMETER DC $=+.00008 /+.00047$	$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{(\mathrm{TX})}{\mathrm{Ti} \text { NAMITE }-\mathrm{X}}$
DCON = h_{6}	0.1181	$3,000 \mathrm{~mm}$		6,0	75,0	19,0	15,0	51,0	67816
>.1181-. 2362 DIAMETER	0.1220	3,100 mm		6,0	80,0	20,0	15,0	49,0	67817
DC $=+.00016 /+.00063$	0.1250	$3,175 \mathrm{~mm}$	1/8	6,0	80,0	21,0	16,0	49,0	58866
DCON $=\mathrm{h}_{6}$	0.1260	$3,200 \mathrm{~mm}$		6,0	80,0	21,0	16,0	49,0	67818
>.2362-. 3937 DIAMETER	0.1299	$3,300 \mathrm{~mm}$		6,0	80,0	21,0	16,0	49,0	67819
DC $=+.00024 /+.00083$	0.1339	$3,400 \mathrm{~mm}$		6,0	80,0	22,0	17,0	49,0	67820
DCON $=h_{6}$	0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	80,0	22,0	17,0	49,0	58867
>.3937-7087 DIAMETER	0.1378	3,500 mm		6,0	80,0	23,0	18,0	49,0	67821
DC $=+.00028 /+.00098$	0.1405	3,569 mm	\#28	6,0	80,0	23,0	18,0	49,0	58868
DCON $=\mathrm{h}_{6}$	0.1406	3,571 mm	9/64	6,0	80,0	23,0	18,0	49,0	58869
>.7087-1.1811 DIAMETER	0.1417	3,600 mm		6,0	80,0	23,0	18,0	49,0	67822
DC $=+.00031 /+.00114$	0.1457	3,700 mm		6,0	80,0	24,0	19,0	49,0	67823
DCON $=\mathrm{h}_{6}$	0.1470	3,734 mm	\#26	6,0	80,0	24,0	19,0	49,0	58870
	0.1495	3,797 mm	\#25	6,0	80,0	25,0	19,0	49,0	58871
TOLERANCES (mm)	0.1496	$3,800 \mathrm{~mm}$		6,0	80,0	25,0	19,0	49,0	67824
≤ 3 diameter	0.1520	3,861 mm	\#24	6,0	80,0	25,0	19,0	49,0	58872
DC $=+0,002 /+0,012$	0.1535	3,900 mm		6,0	80,0	25,0	19,0	49,0	67825
DCON $=\mathrm{h}_{6}$	0.1562	$3,967 \mathrm{~mm}$	5/32	6,0	80,0	26,0	20,0	49,0	58873
>3-6 diameter	0.1570	3,988 mm	\#22	6,0	80,0	26,0	20,0	49,0	58874
DC $=+0,004 /+0,016$	0.1575	4,000 mm		6,0	80,0	26,0	20,0	49,0	67826
DCON $=\mathrm{h}_{6}$	0.1590	4,039 mm	\#21	6,0	80,0	26,0	20,0	49,0	58875
>6-10 DIAMETER	0.1610	4,089 mm	\#20	6,0	90,0	27,0	20,0	53,0	58876
$\text { DC } \quad=+0,006 /+0,021$	0.1614	$4,100 \mathrm{~mm}$		6,0	90,0	27,0	20,0	53,0	67827
DCON $=\mathrm{h}_{6}$	0.1654	4,200 mm		6,0	90,0	27,0	21,0	53,0	67828
$>10-18$ DIAMETER	0.1693	$4,300 \mathrm{~mm}$		6,0	90,0	28,0	22,0	53,0	67829
$\text { DC } \quad=+0,007 /+0,025$	0.1719	4,366 mm	11/64	6,0	90,0	28,0	22,0	53,0	58877
$\text { DCON }=h_{6}$	0.1732	$4,400 \mathrm{~mm}$		6,0	90,0	29,0	22,0	53,0	67830
	0.1770	$4,496 \mathrm{~mm}$	\#16	6,0	90,0	29,0	22,0	53,0	58878
>18-30 DIAMETER DC $=+0,008 /+0,029$	0.1772	$4,500 \mathrm{~mm}$		6,0	90,0	29,0	23,0	53,0	67831
$\begin{aligned} & \text { DC }=+0,008 /+0,029 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1811	4,600 mm		6,0	90,0	30,0	23,0	53,0	67832
	0.1850	4,699 mm	\#13	6,0	90,0	31,0	23,0	53,0	58879
	0.1875	4,763 mm	3/16	6,0	90,0	31,0	24,0	53,0	58880
STEELS	0.1890	4,801 mm	\#12	6,0	90,0	31,0	24,0	53,0	58881
STAINLESS STEELS	0.1929	4,900 mm		6,0	90,0	32,0	24,0	53,0	67835
CASTIRON	0.1935	$4,915 \mathrm{~mm}$	\#10	6,0	90,0	32,0	25,0	53,0	58882
CAStiron	0.1969	$5,000 \mathrm{~mm}$		6,0	95,0	33,0	25,0	51,0	67836
HIGH TEMP ALLOYS	0.2008	$5,100 \mathrm{~mm}$		6,0	95,0	33,0	26,0	51,0	67837
NON-FERROUS	0.2010	$5,105 \mathrm{~mm}$	\#7	6,0	95,0	33,0	26,0	51,0	58883
	0.2031	5,159 mm	13/64	6,0	95,0	34,0	26,0	51,0	58884
	0.2047	5,200 mm		6,0	95,0	34,0	26,0	51,0	67838
For patent information visit	0.2087	$5,300 \mathrm{~mm}$		6,0	95,0	34,0	27,0	51,0	67839
www.ksptpatents.com	0.2090	5,309 mm	\#4	6,0	95,0	35,0	27,0	51,0	58885

- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
- Specialized selfcentering notched point eliminates the need for spot drilling decreasing thrust and deflection
- Engineered edge protection improves edge strength and reduces edge fatigue allowing for increased feed rates
- Recommended for materials $\leq 56 \mathrm{HRc}$ (≤ 577 Bhn)

FRACTIONAL \& METRIC
Series 146U

\square
Common

Reach

Internal
Point Angle

FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface fininh along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spon drilling decreasing
thrust and deflection
- Engineered edge
protection improves edge
stronth and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials ≤ 56 HRc
(≤ 577 Bhn)

inch \& mm								$\underset{\substack{\text { Ti-NAMITE }}}{\text { EDP NO. }}$
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	overall LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	
0.2126	$5,400 \mathrm{~mm}$		6,0	95,0	35,0	27,0	51,0	67840
0.2130	$5,410 \mathrm{~mm}$	\#3	6,0	95,0	35,0	27,0	51,0	58886
0.2165	$5,500 \mathrm{~mm}$		6,0	95,0	36,0	27,0	51,0	67841
0.2188	$5,558 \mathrm{~mm}$	7/32	6,0	95,0	36,0	28,0	51,0	58887
0.2205	$5,600 \mathrm{~mm}$		6,0	95,0	36,0	28,0	51,0	67842
0.2244	$5,700 \mathrm{~mm}$		6,0	95,0	37,0	28,0	51,0	67843
0.2283	$5,800 \mathrm{~mm}$		6,0	95,0	38,0	29,0	51,0	67844
0.2323	$5,900 \mathrm{~mm}$		6,0	95,0	38,0	30,0	51,0	67845
0.2344	$5,954 \mathrm{~mm}$	15/64	6,0	95,0	39,0	30,0	51,0	58888
0.2362	6,000 mm		6,0	95,0	39,0	30,0	51,0	67846
0.2402	6,100 mm		8,0	100,0	40,0	31,0	49,0	67847
0.2441	6,200 mm		8,0	100,0	40,0	31,0	49,0	67848
0.2461	6,250 mm		8,0	100,0	41,0	31,0	49,0	67849
0.2480	6,300 mm		8,0	100,0	41,0	31,0	49,0	67850
0.2500	6,350 mm	1/4E \#0	8,0	100,0	41,0	32,0	49,0	58889
0.2520	6,400 mm		8,0	100,0	42,0	32,0	49,0	67851
0.2559	6,500 mm		8,0	100,0	42,0	32,0	49,0	67852
0.2570	6,528 mm	F	8,0	100,0	42,0	33,0	49,0	58890
0.2598	6,600 mm		8,0	100,0	43,0	33,0	49,0	67853
0.2638	6,700 mm		8,0	100,0	44,0	34,0	49,0	67854
0.2656	6,746 mm	17/64	8,0	100,0	44,0	34,0	49,0	58891
0.2677	6,800 mm		8,0	100,0	44,0	34,0	49,0	67855
0.2717	6,900 mm		8,0	100,0	45,0	35,0	49,0	67856
0.2720	6,909 mm	1	8,0	100,0	45,0	35,0	49,0	58892
0.2756	7,000 mm		8,0	100,0	46,0	35,0	49,0	67857
0.2795	7,100 mm		8,0	100,0	46,0	35,0	49,0	67858
0.2812	7,142 mm	9/32	8,0	100,0	46,0	36,0	49,0	58893
0.2835	7,200 mm		8,0	110,0	47,0	36,0	53,0	67859
0.2854	$7,250 \mathrm{~mm}$		8,0	110,0	47,0	36,0	53,0	67860
0.2874	$7,300 \mathrm{~mm}$		8,0	110,0	47,0	36,0	53,0	67861
0.2913	$7,400 \mathrm{~mm}$		8,0	110,0	48,0	37,0	53,0	67862
0.2953	7,500 mm		8,0	110,0	49,0	38,0	53,0	67863
0.2969	7,541 mm	19/64	8,0	110,0	49,0	38,0	53,0	58894
0.2992	7,600 mm		8,0	110,0	49,0	38,0	53,0	67864
0.3031	7,700 mm		8,0	110,0	50,0	38,0	53,0	67865
0.3071	$7,800 \mathrm{~mm}$		8,0	110,0	51,0	39,0	53,0	67866
0.3110	$7,900 \mathrm{~mm}$		8,0	110,0	51,0	39,0	53,0	67867
0.3125	7,938 mm	5/16	8,0	110,0	52,0	40,0	53,0	58895
0.3150	$8,000 \mathrm{~mm}$		8,0	110,0	52,0	40,0	53,0	67868
0.3189	$8,100 \mathrm{~mm}$		10,0	115,0	53,0	41,0	51,0	67869
0.3228	$8,200 \mathrm{~mm}$		10,0	115,0	53,0	41,0	51,0	67870
0.3268	8,300 mm		10,0	115,0	54,0	42,0	51,0	67871
							continued	on next page

TOLERANCES (inch)
$\leq .1181$ DIAMETER
DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 diameter
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGHTEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.	CONTINUED
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{\text { (TX) }}{\text { ti-NAMITE }}$	
0.3281	8,334 mm	21/64	10,0	115,0	54,0	42,0	51,0	58896	
0.3307	$8,400 \mathrm{~mm}$		10,0	115,0	55,0	42,0	51,0	67872	
0.3320	$8,433 \mathrm{~mm}$	0	10,0	115,0	55,0	42,0	51,0	58897	
0.3346	8,500 mm		10,0	115,0	55,0	42,0	51,0	67873	
0.3386	$8,600 \mathrm{~mm}$		10,0	115,0	56,0	43,0	51,0	67874	
0.3425	8,700 mm		10,0	115,0	57,0	43,0	51,0	67875	
0.3438	8,733 mm	11/32	10,0	115,0	57,0	44,0	51,0	58898	
0.3465	8,800 mm		10,0	115,0	57,0	44,0	51,0	67876	
0.3504	8,900 mm		10,0	115,0	58,0	45,0	51,0	67877	
0.3543	9,000 mm		10,0	115,0	58,0	45,0	51,0	67878	
0.3583	9,100 mm		10,0	115,0	59,0	46,0	51,0	67879	
0.3594	9,129 mm	23/64	10,0	115,0	59,0	46,0	51,0	58899	
0.3622	9,200 mm		10,0	125,0	60,0	46,0	55,0	67880	
0.3661	9,300 mm		10,0	125,0	60,0	46,0	55,0	67881	
0.3680	9,347 mm	U	10,0	125,0	61,0	47,0	55,0	58900	
0.3701	9,400 mm		10,0	125,0	61,0	47,0	55,0	67882	
0.3740	9,500 mm		10,0	125,0	62,0	47,0	55,0	67883	
0.3750	9,525 mm	3/8	10,0	125,0	62,0	48,0	55,0	58901	
0.3780	9,600 mm		10,0	125,0	62,0	48,0	55,0	67884	
0.3819	9,700 mm		10,0	125,0	63,0	49,0	55,0	67885	
0.3858	9,800 mm		10,0	125,0	64,0	49,0	55,0	67886	
0.3898	9,900 mm		10,0	125,0	64,0	50,0	55,0	67887	
0.3906	9,921 mm	25/64	10,0	125,0	64,0	50,0	55,0	58902	
0.3937	$10,000 \mathrm{~mm}$		10,0	125,0	65,0	50,0	55,0	67888	
0.3970	10,084 mm	X	12,0	135,0	66,0	50,0	57,0	58903	
0.3976	10,100 mm		12,0	135,0	66,0	50,0	57,0	67889	
0.4016	10,200 mm		12,0	135,0	66,0	51,0	57,0	67890	
0.4040	10,262 mm	Y	12,0	135,0	67,0	51,0	57,0	58904	
0.4055	10,300 mm		12,0	135,0	67,0	51,0	57,0	67891	
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	135,0	67,0	52,0	57,0	58905	
0.4094	$10,400 \mathrm{~mm}$		12,0	135,0	68,0	52,0	57,0	67892	
0.4134	10,500 mm		12,0	135,0	68,0	53,0	57,0	67893	
0.4173	10,600 mm		12,0	135,0	69,0	53,0	57,0	67894	
0.4213	10,700 mm		12,0	135,0	70,0	54,0	57,0	67895	
0.4219	10,716 mm	27/64	12,0	135,0	70,0	54,0	57,0	58906	
0.4252	10,800 mm		12,0	135,0	70,0	54,0	57,0	67896	
0.4291	$10,900 \mathrm{~mm}$		12,0	135,0	71,0	54,0	57,0	67897	
0.4331	$11,000 \mathrm{~mm}$		12,0	135,0	72,0	55,0	57,0	67898	
0.4370	$11,100 \mathrm{~mm}$		12,0	135,0	72,0	55,0	57,0	67899	
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	135,0	72,0	56,0	57,0	58907	
0.4409	$11,200 \mathrm{~mm}$		12,0	135,0	73,0	56,0	57,0	67900	
0.4449	$11,300 \mathrm{~mm}$		12,0	135,0	73,0	57,0	57,0	67901	
0.4488	$11,400 \mathrm{~mm}$		12,0	145,0	74,0	57,0	62,0	67902	
0.4528	11,500 mm		12,0	145,0	75,0	58,0	62,0	67903	
0.4531	$11,509 \mathrm{~mm}$	29/64	12,0	145,0	75,0	58,0	62,0	58908	
0.4567	11,600 mm		12,0	145,0	75,0	58,0	62,0	67904	
0.4606	$11,700 \mathrm{~mm}$		12,0	145,0	76,0	58,0	62,0	67905	
0.4646	11,800 mm		12,0	145,0	77,0	59,0	62,0	67906	
0.4685	$11,900 \mathrm{~mm}$		12,0	145,0	77,0	59,0	62,0	67907	
0.4688	11,908 mm	15/32	12,0	145,0	77,0	60,0	62,0	58909	

FRACTIONAL \& METRIC
Series 146U
Common
Internal
Coolant
Point Angle

FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressive drilling
- Speciaizized self-
centering notched point
eliminates the need for
spot ariling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strenth and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials ≤ 56 HRc
($\leqslant 577$ Bhn)

inch \& mm								EDP NO.
$\begin{aligned} & \text { DECIMAL } \\ & \text { DC } \end{aligned}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	OVERALL LENGIH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\begin{gathered} \text { Ti-NAMITE }{ }^{\circ}-\mathrm{X} \\ \text { (TX) } \end{gathered}$
0.4724	$12,000 \mathrm{~mm}$		12,0	145,0	78,0	60,0	62,0	67908
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	155,0	80,0	62,0	59,0	58910
0.4921	$12,500 \mathrm{~mm}$		14,0	155,0	81,0	62,0	59,0	67909
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	155,0	83,0	64,0	59,0	58911
0.5039	$12,800 \mathrm{~mm}$		14,0	155,0	83,0	64,0	59,0	67910
0.5118	$13,000 \mathrm{~mm}$		14,0	155,0	84,0	65,0	59,0	67911
0.5156	$13,096 \mathrm{~mm}$	33/64	14,0	155,0	85,0	65,0	59,0	58912
0.5312	$13,492 \mathrm{~mm}$	17/32	14,0	155,0	88,0	67,0	59,0	58913
0.5315	$13,500 \mathrm{~mm}$		14,0	155,0	88,0	68,0	59,0	67912
0.5469	13,891 mm	35/64	14,0	155,0	90,0	69,0	59,0	58914
0.5512	$14,000 \mathrm{~mm}$		14,0	155,0	91,0	70,0	59,0	67913
0.5625	$14,288 \mathrm{~mm}$	9/16	16,0	175,0	93,0	71,0	66,0	58915
0.5709	$14,500 \mathrm{~mm}$		16,0	175,0	94,0	73,0	66,0	67914
0.5781	14,684 mm	37/64	16,0	175,0	95,0	73,0	66,0	58916
0.5906	$15,000 \mathrm{~mm}$		16,0	175,0	98,0	75,0	66,0	67915
0.5938	15,083 mm	19/32	16,0	175,0	98,0	75,0	66,0	58917
0.6094	$15,479 \mathrm{~mm}$	39/64	16,0	175,0	101,0	77,0	66,0	58918
0.6102	$15,500 \mathrm{~mm}$		16,0	175,0	101,0	77,0	66,0	67916
0.6250	$15,875 \mathrm{~mm}$	5/8	16,0	175,0	103,0	79,0	66,0	58919
0.6299	$16,000 \mathrm{~mm}$		16,0	175,0	104,0	80,0	66,0	67917
0.6406	16,271 mm	41/64	18,0	195,0	106,0	81,0	73,0	58920
0.6496	16,500 mm		18,0	195,0	107,0	82,0	73,0	67918
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	195,0	108,0	83,0	73,0	58921
0.6693	17,000 mm		18,0	195,0	111,0	85,0	73,0	67919
0.6719	$17,066 \mathrm{~mm}$	43/64	18,0	195,0	111,0	85,0	73,0	58922
0.6875	17,463 mm	11/16	18,0	195,0	114,0	87,0	73,0	58923
0.6890	$17,500 \mathrm{~mm}$		18,0	195,0	114,0	88,0	73,0	67920
0.7031	17,859 mm	45/64	18,0	195,0	116,0	89,0	73,0	58924
0.7087	$18,000 \mathrm{~mm}$		18,0	195,0	117,0	90,0	73,0	67921
0.7188	18,258 mm	23/32	20,0	215,0	119,0	91,0	80,0	58925
0.7283	$18,500 \mathrm{~mm}$		20,0	215,0	120,0	92,0	80,0	67922
0.7344	18,654 mm	47/64	20,0	215,0	121,0	93,0	80,0	58926
0.7480	19,000 mm		20,0	215,0	123,0	95,0	80,0	67923
0.7500	19,050 mm	3/4	20,0	215,0	124,0	95,0	80,0	58927
0.7656	19,446 mm	49/64	20,0	215,0	126,0	97,0	80,0	58928
0.7677	19,500 mm		20,0	215,0	127,0	97,0	80,0	67924
0.7812	19,842 mm	25/32	20,0	215,0	129,0	99,0	80,0	58929
0.7874	20,000 mm		20,0	215,0	130,0	100,0	80,0	67925
0.7969	20,241 mm	51/64	22,0	220,0	132,0	101,0	81,0	58930
0.8071	20,500 mm		22,0	220,0	133,0	103,0	81,0	67926
0.8125	20,638 mm	13/16	22,0	220,0	134,0	103,0	81,0	58931

TOLERANCES (inch) $\leq .1181$ DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$ DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$
DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON $=h_{6}$
>3-6 DIAMETER
DC $=+0,004 /+0,016$ DCON $=h_{6}$
>6-10 DIAMETER
DC $=+0,006 /+0,021$
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 diameter
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

Margins

136U 2xD
FRACTIONAL \& METRIC SERIES

TOLERANCES (inch)	inch \& mm								EDP NO.
$\begin{aligned} & \leq .1181 \text { DIAMETER } \\ & D C \quad=+.00008 /+.00047 \\ & D C O N=h_{6} \end{aligned}$	$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL LENGTH OAL	$\begin{aligned} & \text { FLUTE } \\ & \text { LENGTH } \\ & \text { LCFF } \end{aligned}$	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { LENGTH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-X ~}$
	0.0591	1,500 mm		6,0	45,0	5,0	3,0	33,0	67060
>.1181-. 2362 DIAMETER DC $=+.00016 /+.00063$ DCON $=h_{6}$	0.0625	1,588 mm	1/16	6,0	45,0	6,0	3,0	33,0	58480
	0.0630	1,600 mm		6,0	45,0	6,0	3,0	33,0	67061
>.2362-. 3937 DIAMETER DC $=+.00024 /+.00083$ DCON $=h_{6}$	0.0669	$1,700 \mathrm{~mm}$		6,0	45,0	6,0	3,0	33,0	67062
	0.0709	$1,800 \mathrm{~mm}$		6,0	45,0	6,0	4,0	33,0	67063
	0.0748	1,900 mm		6,0	45,0	7,0	4,0	33,0	67064
>.3937-. 7087 DIAMETER DC $=+.00028 /+.00098$ DCON $=h_{6}$	0.0781	1,984 mm	5/64	6,0	45,0	7,0	4,0	33,0	58481
	0.0787	2,000 mm		6,0	45,0	7,0	4,0	33,0	67065
	0.0827	2,100 mm		6,0	45,0	7,0	4,0	33,0	67066
>.7087-1.1811 DIAMETER DC $=+.00031 /+.00114$ DCON $=h_{6}$	0.0866	2,200 mm		6,0	50,0	8,0	4,0	31,0	67067
	0.0906	2,300 mm		6,0	50,0	8,0	5,0	31,0	67068
	0.0938	2,383 mm	3/32	6,0	50,0	8,0	5,0	31,0	58482
TOLERANCES (mm)	0.0945	2,400 mm		6,0	50,0	8,0	5,0	31,0	67069
	0.0984	2,500 mm		6,0	50,0	9,0	5,0	31,0	67070
$\begin{aligned} & \leq 3 \text { DIAMETER } \\ & \text { DC }=+0,002 /+0,012 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1015	2,578 mm	\#38	6,0	50,0	9,0	5,0	31,0	58483
	0.1024	2,600 mm		6,0	50,0	9,0	5,0	31,0	67071
	0.1040	2,642 mm	\#37	6,0	50,0	9,0	5,0	31,0	58484
$\begin{aligned} & >3-6 \text { DIAMETER } \\ & \text { DC }=+0,004 /+0,016 \\ & \text { DCON }=h_{6} \end{aligned}$	0.1063	2,700 mm		6,0	50,0	9,0	5,0	31,0	67072
	0.1065	2,705 mm	\#36	6,0	50,0	9,0	5,0	31,0	58485
>6-10 DIAMETER DC $=+0,006 /+0,021$ DCON $=h_{6}$	0.1094	2,779 mm	7/64	6,0	50,0	10,0	6,0	31,0	58486
	0.1102	2,800 mm		6,0	50,0	10,0	6,0	31,0	67073
	0.1130	2,870 mm	\#33	6,0	50,0	10,0	6,0	31,0	58487
>10-18 DIAMETER DC $=+0,007 /+0,025$ DCON $=h_{6}$	0.1142	2,900 mm		6,0	50,0	10,0	6,0	31,0	67074
	0.1181	3,000 mm		6,0	50,0	10,0	6,0	31,0	67075
	0.1220	3,100 mm		6,0	50,0	11,0	6,0	31,0	67076
>18-30 diameter DC $=+0,008 /+0,029$ DCON $=h_{6}$	0.1250	3,175 mm	1/8	6,0	50,0	11,0	6,0	31,0	58488
	0.1260	3,200 mm		6,0	50,0	11,0	6,0	31,0	67077
	0.1299	$3,300 \mathrm{~mm}$		6,0	50,0	12,0	7,0	31,0	67078
	0.1339	$3,400 \mathrm{~mm}$		6,0	50,0	12,0	7,0	31,0	67079
STEELS	0.1360	$3,454 \mathrm{~mm}$	\#29	6,0	50,0	12,0	7,0	31,0	58489
STAINLESS STEELS	0.1378	3,500 mm		6,0	50,0	12,0	7,0	31,0	67080
CASTIRON	0.1405	3,569 mm	\#28	6,0	50,0	12,0	7,0	31,0	58490
	0.1406	3,571 mm	9/64	6,0	50,0	12,0	7,0	31,0	58491
HIGH TEMP ALLOYS	0.1417	$3,600 \mathrm{~mm}$		6,0	50,0	13,0	7,0	31,0	67081
NON-FERROUS	0.1457	3,700 mm		6,0	50,0	13,0	7,0	31,0	67082
	0.1470	3,734 mm	\#26	6,0	50,0	13,0	7,0	31,0	58492
For patent information visit www.ksptpatents.com	0.1495	3,797 mm	\#25	6,0	50,0	13,0	8,0	31,0	58493
	0.1496	3,800 mm		6,0	50,0	13,0	8,0	$\begin{gathered} 31,0 \\ \text { continued } \end{gathered}$	67083 next pag

- 4-margin design improves accuracy and surface finish along with increased strength for aggressive drilling
- Specialized selfcentering notched point eliminates the need for spot drilling decreasing thrust and deflection
- Engineered edge protection improves edge strength and reduces edge fatigue allowing for increased feed rates
- Recommended for materials ≤ 56 HRc (≤ 577 Bhn)

FRACTIONAL \& METRIC
Series 136U

FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggeressive driling
- Specialized self-
centering notched point
eliminates the needf for
spot drilling decerasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge efatigue allowing for
increased feed rates
- Recommended for
materials ≤ 56 HRc
(≤ 577 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	SHANK DIAMETER DCON	overall LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	SHANK LENGTH LS	$\underset{\text { (TX) }}{\text { Ti-NAMITE® }}$
0.1520	3,861 mm	\#24	6,0	50,0	14,0	8,0	31,0	58494
0.1535	3,900 mm		6,0	50,0	14,0	8,0	31,0	67084
0.1562	3,967 mm	5/32	6,0	50,0	14,0	8,0	31,0	58495
0.1570	3,988 mm	\#22	6,0	50,0	14,0	8,0	31,0	58496
0.1575	4,000 mm		6,0	50,0	14,0	8,0	31,0	67085
0.1590	4,039 mm	\#21	6,0	50,0	14,0	8,0	31,0	58497
0.1610	4,089 mm	\#20	6,0	50,0	14,0	8,0	31,0	58498
0.1614	4,100 mm		6,0	50,0	14,0	8,0	31,0	67086
0.1654	4,200 mm		6,0	60,0	15,0	8,0	34,0	67087
0.1693	4,300 mm		6,0	60,0	15,0	9,0	34,0	67088
0.1719	4,366 mm	11/64	6,0	60,0	15,0	9,0	34,0	58499
0.1732	4,400 mm		6,0	60,0	15,0	9,0	34,0	67089
0.1770	4,496 mm	\#16	6,0	60,0	16,0	9,0	34,0	58500
0.1772	4,500 mm		6,0	60,0	16,0	9,0	34,0	67090
0.1811	4,600 mm		6,0	60,0	16,0	9,0	34,0	67091
0.1850	4,699 mm	\#13	6,0	60,0	16,0	9,0	34,0	58501
0.1875	4,763 mm	3/16	6,0	60,0	17,0	10,0	34,0	58502
0.1890	4,801 mm	\#12	6,0	60,0	17,0	10,0	34,0	58503
0.1929	4,900 mm		6,0	60,0	17,0	10,0	34,0	67094
0.1935	4,915 mm	\#10	6,0	60,0	17,0	10,0	34,0	58504
0.1969	5,000 mm		6,0	60,0	18,0	10,0	34,0	67095
0.2008	5,100 mm		6,0	60,0	18,0	10,0	34,0	67096
0.2010	5,105 mm	\#7	6,0	60,0	18,0	10,0	34,0	58505
0.2031	5,159 mm	13/64	6,0	60,0	18,0	10,0	34,0	58506
0.2047	5,200 mm		6,0	60,0	18,0	10,0	34,0	67097
0.2087	5,300 mm		6,0	60,0	19,0	11,0	34,0	67098
0.2090	5,309 mm	\#4	6,0	60,0	19,0	11,0	34,0	58507
0.2126	$5,400 \mathrm{~mm}$		6,0	60,0	19,0	11,0	34,0	67099
0.2130	$5,410 \mathrm{~mm}$	\#3	6,0	60,0	19,0	11,0	34,0	58508
0.2165	5,500 mm		6,0	60,0	19,0	11,0	34,0	67100
0.2188	5,558 mm	7/32	6,0	60,0	19,0	11,0	34,0	58509
0.2205	5,600 mm		6,0	60,0	20,0	11,0	34,0	67101
0.2244	5,700 mm		6,0	60,0	20,0	11,0	34,0	67102
0.2283	5,800 mm		6,0	60,0	20,0	12,0	34,0	67103
0.2323	$5,900 \mathrm{~mm}$		6,0	60,0	21,0	12,0	34,0	67104
0.2344	5,954 mm	15/64	6,0	60,0	21,0	12,0	34,0	58510
0.2362	6,000 mm		6,0	60,0	21,0	12,0	34,0	67105
0.2402	6,100 mm		8,0	70,0	22,0	13,0	37,0	67106
0.2441	6,200 mm		8,0	70,0	22,0	12,0	37,0	67107
0.2461	6,250 mm		8,0	70,0	22,0	13,0	37,0	67108

TOLERANCES (inch) <. 1181 DIAMETER

DC $=+.00008 /+.00047$ DCON $=h_{6}$
>.1181-. 2362 DIAMETER
DC $=+.00016 /+.00063$ DCON $=h_{6}$
>.2362-. 3937 DIAMETER
DC $=+.00024 /+.00083$ DCON $=h_{6}$
>.3937-. 7087 DIAMETER
DC $=+.00028 /+.00098$
DCON $=h_{6}$
>.7087-1.1811 DIAMETER
DC $=+.00031 /+.00114$ DCON $=h_{6}$

TOLERANCES (mm)
≤ 3 diameter
DC $=+0,002 /+0,012$
DCON = h_{6}
>3-6 DIAMETER
DC = +0,004/+0,016
DCON $=h_{6}$
>6-10 DIAMETER
DC = +0,006/+0,021
DCON $=h_{6}$
>10-18 DIAMETER
DC $=+0,007 /+0,025$
DCON $=h_{6}$
>18-30 diameter
DC $=+0,008 /+0,029$
DCON $=h_{6}$

STEELS
STAINLESS STEELS
CAST IRON
NON-FERROUS
HIGH TEMP ALLOYS
HARDENED STEELS

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	$\begin{gathered} \text { FLUTE } \\ \text { LENGTH } \end{gathered}$	$\begin{aligned} & \text { USABLE } \\ & \text { LENGTH } \end{aligned}$ LU	$\begin{gathered} \text { SHANK } \\ \text { LENGGH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\text { Ti-NAMITE }-X ~}$
0.2480	6,300 mm		8,0	70,0	22,0	13,0	37,0	67109
0.2500	6,350 mm	1/4E \#0	8,0	70,0	22,0	13,0	37,0	58511
0.2520	6,400 mm		8,0	70,0	22,0	13,0	37,0	67110
0.2559	6,500 mm		8,0	70,0	23,0	13,0	37,0	67111
0.2570	6,528 mm	F	8,0	70,0	23,0	13,0	37,0	58512
0.2598	6,600 mm		8,0	70,0	23,0	13,0	37,0	67112
0.2638	6,700 mm		8,0	70,0	23,0	13,0	37,0	67113
0.2656	6,746 mm	17/64	8,0	70,0	24,0	13,0	37,0	58513
0.2677	6,800 mm		8,0	70,0	24,0	14,0	37,0	67114
0.2717	6,900 mm		8,0	70,0	24,0	14,0	37,0	67115
0.2720	6,909 mm	1	8,0	70,0	24,0	14,0	37,0	58514
0.2756	7,000 mm		8,0	70,0	25,0	14,0	37,0	67116
0.2795	7,100 mm		8,0	70,0	25,0	14,0	37,0	67117
0.2812	7,142 mm	9/32	8,0	70,0	25,0	14,0	37,0	58515
0.2835	7,200 mm		8,0	70,0	25,0	14,0	37,0	67118
0.2854	7,250 mm		8,0	70,0	25,0	14,0	37,0	67119
0.2874	7,300 mm		8,0	70,0	26,0	15,0	37,0	67120
0.2913	7,400 mm		8,0	70,0	26,0	15,0	37,0	67121
0.2953	7,500 mm		8,0	70,0	26,0	15,0	37,0	67122
0.2969	7,541 mm	19/64	8,0	70,0	26,0	15,0	37,0	58516
0.2992	7,600 mm		8,0	70,0	27,0	15,0	37,0	67123
0.3031	7,700 mm		8,0	70,0	27,0	15,0	37,0	67124
0.3071	7,800 mm		8,0	70,0	27,0	16,0	37,0	67125
0.3110	7,900 mm		8,0	70,0	28,0	16,0	37,0	67126
0.3125	7,938 mm	5/16	8,0	70,0	28,0	16,0	37,0	58517
0.3150	8,000 mm		8,0	70,0	28,0	16,0	37,0	67127
0.3189	8,100 mm		10,0	80,0	29,0	17,0	40,0	67128
0.3228	8,200 mm		10,0	80,0	29,0	16,0	40,0	67129
0.3268	8,300 mm		10,0	80,0	29,0	17,0	40,0	67130
0.3281	8,334 mm	21/64	10,0	80,0	29,0	17,0	40,0	58518
0.3307	$8,400 \mathrm{~mm}$		10,0	80,0	29,0	17,0	40,0	67131
0.3320	$8,433 \mathrm{~mm}$	0	10,0	80,0	30,0	17,0	40,0	58519
0.3346	8,500 mm		10,0	80,0	30,0	17,0	40,0	67132
0.3386	$8,600 \mathrm{~mm}$		10,0	80,0	30,0	17,0	40,0	67133
0.3425	$8,700 \mathrm{~mm}$		10,0	80,0	30,0	17,0	40,0	67134
0.3438	8,733 mm	11/32	10,0	80,0	31,0	17,0	40,0	58520
0.3465	8,800 mm		10,0	80,0	31,0	18,0	40,0	67135
0.3504	8,900 mm		10,0	80,0	31,0	18,0	40,0	67136
0.3543	9,000 mm		10,0	80,0	31,0	18,0	40,0	67137
0.3583	9,100 mm		10,0	80,0	32,0	18,0	40,0	67138
0.3594	9,129 mm	23/64	10,0	80,0	32,0	18,0	40,0	58521
0.3622	9,200 mm		10,0	80,0	32,0	18,0	40,0	67139
0.3661	9,300 mm		10,0	80,0	33,0	19,0	40,0	67140
0.3680	9,347 mm	U	10,0	80,0	33,0	19,0	40,0	58522
0.3701	$9,400 \mathrm{~mm}$		10,0	80,0	33,0	19,0	40,0	67141
0.3740	9,500 mm		10,0	80,0	33,0	19,0	40,0	67142
							continued	on next page

FRACTIONAL \& METRIC
Series 136U
Common

FRACTIONAL \& METRIC SERIES

- 4-margin design
improves accuracy and
surface finish along with
increased strength for
aggressive drilling
- Specialized self-
centering notched point
eliminates the need for
spot drilling decreasing
thrust and deflection
- Engineered edge
protection improves edge
strength and reduces
edge fatigue allowing for
increased feed rates
- Recommended for
materials $\leq 56 ~ H R c$
(≤ 577 Bhn)

inch \& mm								EDP NO.
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{aligned} & \text { SHANK } \\ & \text { DIAMETER } \\ & \text { DCON } \end{aligned}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	$\begin{aligned} & \text { SHANK } \\ & \text { LENGTH } \end{aligned}$ LS	$\underset{(T X)}{\text { Ti-NAMITE®-X }}$
0.3750	9,525 mm	3/8	10,0	80,0	33,0	19,0	40,0	58523
0.3780	9,600 mm		10,0	80,0	34,0	19,0	40,0	67143
0.3819	9,700 mm		10,0	80,0	34,0	19,0	40,0	67144
0.3858	9,800 mm		10,0	80,0	34,0	20,0	40,0	67145
0.3898	9,900 mm		10,0	80,0	35,0	20,0	40,0	67146
0.3906	9,921 mm	25/64	10,0	80,0	35,0	20,0	40,0	58524
0.3937	$10,000 \mathrm{~mm}$		10,0	80,0	35,0	20,0	40,0	67147
0.3970	10,084 mm	X	12,0	90,0	36,0	21,0	43,0	58525
0.3976	10,100 mm		12,0	90,0	36,0	21,0	43,0	67148
0.4016	10,200 mm		12,0	90,0	36,0	20,0	43,0	67149
0.4040	10,262 mm	Y	12,0	90,0	36,0	21,0	43,0	58526
0.4055	10,300 mm		12,0	90,0	36,0	21,0	43,0	67150
0.4062	$10,317 \mathrm{~mm}$	13/32	12,0	90,0	36,0	21,0	43,0	58527
0.4094	$10,400 \mathrm{~mm}$		12,0	90,0	36,0	21,0	43,0	67151
0.4134	10,500 mm		12,0	90,0	37,0	21,0	43,0	67152
0.4173	10,600 mm		12,0	90,0	37,0	21,0	43,0	67153
0.4213	10,700 mm		12,0	90,0	37,0	21,0	43,0	67154
0.4219	10,716 mm	27/64	12,0	90,0	38,0	21,0	43,0	58528
0.4252	10,800 mm		12,0	90,0	38,0	22,0	43,0	67155
0.4291	10,900 mm		12,0	90,0	38,0	22,0	43,0	67156
0.4331	$11,000 \mathrm{~mm}$		12,0	90,0	39,0	22,0	43,0	67157
0.4370	11,100 mm		12,0	90,0	39,0	22,0	43,0	67158
0.4375	$11,113 \mathrm{~mm}$	7/16	12,0	90,0	39,0	22,0	43,0	58529
0.4409	$11,200 \mathrm{~mm}$		12,0	90,0	39,0	22,0	43,0	67159
0.4449	$11,300 \mathrm{~mm}$		12,0	90,0	40,0	23,0	43,0	67160
0.4488	$11,400 \mathrm{~mm}$		12,0	90,0	40,0	23,0	43,0	67161
0.4528	$11,500 \mathrm{~mm}$		12,0	90,0	40,0	23,0	43,0	67162
0.4531	$11,509 \mathrm{~mm}$	29/64	12,0	90,0	40,0	23,0	43,0	58530
0.4567	$11,600 \mathrm{~mm}$		12,0	90,0	41,0	23,0	43,0	67163
0.4606	$11,700 \mathrm{~mm}$		12,0	90,0	41,0	23,0	43,0	67164
0.4646	$11,800 \mathrm{~mm}$		12,0	90,0	41,0	24,0	43,0	67165
0.4685	$11,900 \mathrm{~mm}$		12,0	90,0	42,0	24,0	43,0	67166
0.4688	$11,908 \mathrm{~mm}$	15/32	12,0	90,0	42,0	24,0	43,0	58531
0.4724	$12,000 \mathrm{~mm}$		12,0	90,0	42,0	24,0	43,0	67167
0.4844	$12,304 \mathrm{~mm}$	31/64	14,0	100,0	43,0	25,0	46,0	58532
0.4921	$12,500 \mathrm{~mm}$		14,0	100,0	44,0	25,0	46,0	67168
0.5000	$12,700 \mathrm{~mm}$	1/2	14,0	100,0	44,0	25,0	46,0	58533
0.5039	12,800 mm		14,0	100,0	45,0	26,0	46,0	67169

\section*{TOLERANCES (inch) $\leq .1181$ DIAMETER
 DC = +.00008/+. 00047 DCON $=h_{6}$
 >.1181-. 2362 DIAMETER
 DC $=+.00016 /+.00063$ DCON $=h_{6}$
 >.2362-. 3937 DIAMETER
 DC $=+.00024 /+.00083$ DCON $=h_{6}$
 >.3937-. 7087 DIAMETER
 DC $=+.00028 /+.00098$
 DCON $=\mathrm{h}_{6}$
 >.7087-1.1811 DIAMETER
 DC $=+.00031 /+.00114$
 DCON $=h_{6}$
 TOLERANCES (mm)
 ≤ 3 DIAMETER
 DC $=+0,002 /+0,012$
 DCON $=\mathrm{h}_{6}$
 >3-6 DIAMETER
 DC $=+0,004 /+0,016$
 DCON $=h_{6}$
 >6-10 DIAMETER
 DC $=+0,006 /+0,021$
 DCON $=h_{6}$
 >10-18 DIAMETER
 DC $=+0,007 /+0,025$
 DCON $=h_{6}$
 >18-30 DIAMETER
 DC $=+0,008 /+0,029$
 DCON = h_{6}
 | STEELS |
| :--- |
| STAINLESS STEELS |
| CAST IRON |
| NON-FERROUS |
| HIGH TEMP ALLOYS |
| HARDENED STEELS |}

For patent
information visit www.ksptpatents.com

FRACTIONAL \& METRIC SERIES

inch \& mm								EDP NO.	CONTINUED
$\underset{\text { DC }}{\text { DECIMAL }}$	$\begin{aligned} & \text { METRIC } \\ & \text { DC } \end{aligned}$	FRACTIONAL/ LETTER/WIRE DC	$\begin{gathered} \text { SHANK } \\ \text { DIAMETER } \\ \text { DCON } \end{gathered}$	OVERALL LENGTH OAL	FLUTE LENGTH LCF	USABLE LENGTH LU	$\begin{gathered} \text { SHANK } \\ \text { SENGTH } \\ \text { LS } \end{gathered}$	$\underset{\text { (TX) }}{\substack{\text { Ti-NAMITE } \\ \text { - }}}$	
0.5118	$13,000 \mathrm{~mm}$		14,0	100,0	45,0	26,0	46,0	67170	
0.5156	$13,096 \mathrm{~mm}$	33/64	14,0	100,0	46,0	26,0	46,0	58534	
0.5312	13,492 mm	17/32	14,0	100,0	47,0	27,0	46,0	58535	
0.5315	$13,500 \mathrm{~mm}$		14,0	100,0	47,0	27,0	46,0	67171	
0.5469	$13,891 \mathrm{~mm}$	35/64	14,0	100,0	49,0	28,0	46,0	58536	
0.5512	14,000 mm		14,0	100,0	49,0	28,0	46,0	67172	
0.5625	14,288 mm	9/16	16,0	110,0	50,0	29,0	49,0	58537	
0.5709	14,500 mm		16,0	110,0	51,0	29,0	49,0	67173	
0.5781	$14,684 \mathrm{~mm}$	37/64	16,0	110,0	51,0	29,0	49,0	58538	
0.5906	15,000 mm		16,0	110,0	53,0	30,0	49,0	67174	
0.5938	15,083 mm	19/32	16,0	110,0	53,0	30,0	49,0	58539	
0.6094	15,479 mm	39/64	16,0	110,0	54,0	31,0	49,0	58540	
0.6102	15,500 mm		16,0	110,0	54,0	31,0	49,0	67175	
0.6250	15,875 mm	5/8	16,0	110,0	56,0	32,0	49,0	58541	
0.6299	$16,000 \mathrm{~mm}$		16,0	110,0	56,0	32,0	49,0	67176	
0.6406	16,271 mm	41/64	18,0	125,0	57,0	33,0	57,0	58542	
0.6496	16,500 mm		18,0	125,0	58,0	33,0	57,0	67177	
0.6562	$16,667 \mathrm{~mm}$	21/32	18,0	125,0	58,0	33,0	57,0	58543	
0.6693	17,000 mm		18,0	125,0	60,0	34,0	57,0	67178	
0.6719	17,066 mm	43/64	18,0	125,0	60,0	34,0	57,0	58544	
0.6875	17,463 mm	11/16	18,0	125,0	61,0	35,0	57,0	58545	
0.6890	17,500 mm		18,0	125,0	61,0	35,0	57,0	67179	
0.7031	17,859 mm	45/64	18,0	125,0	63,0	36,0	57,0	58546	
0.7087	18,000 mm		18,0	125,0	63,0	36,0	57,0	67180	
0.7188	$18,258 \mathrm{~mm}$	23/32	20,0	135,0	64,0	37,0	60,0	58547	
0.7283	18,500 mm		20,0	135,0	65,0	37,0	60,0	67181	
0.7344	$18,654 \mathrm{~mm}$	47/64	20,0	135,0	65,0	37,0	60,0	58548	
0.7480	19,000 mm		20,0	135,0	66,0	38,0	60,0	67182	
0.7500	$19,050 \mathrm{~mm}$	3/4	20,0	135,0	67,0	38,0	60,0	58549	
0.7656	19,446 mm	49/64	20,0	135,0	68,0	39,0	60,0	58550	
0.7677	$19,500 \mathrm{~mm}$		20,0	135,0	68,0	39,0	60,0	67183	
0.7812	19,842 mm	25/32	20,0	135,0	69,0	40,0	60,0	58551	
0.7874	20,000 mm		20,0	135,0	70,0	40,0	60,0	67184	
0.7969	20,241 mm	51/64	22,0	145,0	71,0	40,0	68,0	58552	
0.8071	20,500 mm		22,0	145,0	72,0	41,0	68,0	67185	
0.8125	20,638 mm	13/16	22,0	145,0	72,0	41,0	68,0	58553	

FRACTIONAL

Series 146U • Series 136U

	Series 146U, 136U Fractional	Hardness	$\underset{(\mathbf{s f m})}{\mathrm{Vc}}$		DC•in							
					1/16	1/8	1/4	$3 / 8$	1/2	5/8	3/4	13/16
	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536	$\begin{gathered} \leq 175 \text { Bhn } \\ \text { or } \\ \leq 7 \mathrm{HRc} \end{gathered}$	285	RPM	17419	8710	4355	2903	2177	1742	1452	1340
			(228-342)	Fr	0.0016	0.0031	0.0062	0.0093	0.0124	0.0155	0.0186	0.0202
				Feed (ipm)	27.0	27.0	27.0	27.0	27.0	27.0	27.0	27.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	255	RPM	15586	7793	3896	2598	1948	1559	1299	1199
			(204-306)	Fr	0.0013	0.0027	0.0054	0.0081	0.0108	0.0135	0.0162	0.0175
				Feed (ipm)	21.0	21.0	21.0	21.0	21.0	21.0	21.0	21.0
		$\begin{aligned} & \leq 425 \mathrm{Bhn} \\ & \text { or } \\ & \leq 45 \mathrm{HRc} \end{aligned}$	145	RPM	8862	4431	2216	1477	1108	886	739	682
			(116-174)	Fr	0.0011	0.0023	0.0045	0.0068	0.0090	0.0113	0.0135	0.0147
				Feed (ipm)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
		$\begin{aligned} & \leq 275 \text { Bhn } \\ & \text { or } \\ & \leq 28 \mathrm{HRc} \end{aligned}$	220	RPM	13446	6723	3362	2241	1681	1345	1121	1034
P			(176-264)	Fr	0.0015	0.0030	0.0059	0.0089	0.0119	0.0149	0.0178	0.0193
				Feed (ipm)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	135	RPM	8251	4126	2063	1375	1031	825	688	635
			(108-162)	Fr	0.0013	0.0027	0.0053	0.0080	0.0107	0.0133	0.0160	0.0173
				Feed (ipm)	11.0	11.0	11.0	11.0	11.0	11.0	11.0	11.0
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{gathered} \leq 200 \mathrm{Bhn} \\ \text { or } \\ \leq 13 \mathrm{HRc} \end{gathered}$	125	RPM	7640	3820	1910	1273	955	764	637	588
			(100-150)	Fr	0.0012	0.0025	0.0050	0.0075	0.0099	0.0124	0.0149	0.0162
				Feed (ipm)	9.5	9.5	9.5	9.5	9.5	9.5	9.5	9.5
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	90	RPM	5501	2750	1375	917	688	550	458	423
			(72-108)	Fr	0.0005	0.0011	0.0022	0.0033	0.0044	0.0055	0.0065	0.0071
				Feed (ipm)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	$\begin{gathered} \leq 185 \text { Bhn } \\ \text { or } \\ \leq 9 \mathrm{HRc} \end{gathered}$	265	RPM	16197	8098	4049	2699	2025	1620	1350	1246
			(212-318)	Fr	0.0008	0.0016	0.0032	0.0048	0.0064	0.0080	0.0096	0.0104
				Feed (ipm)	13.0	13.0	13.0	13.0	13.0	13.0	13.0	13.0
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	170	RPM	10390	5195	2598	1732	1299	1039	866	799
			(136-204)	Fr	0.0006	0.0013	0.0025	0.0038	0.0050	0.0063	0.0075	0.0081
				Feed (ipm)	6.5	6.5	6.5	6.5	6.5	6.5	6.5	6.5
	STAINLESS STEELS (DIFFICULT) 304, 316, 321, 13-8 PH, 15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	130	RPM	7946	3973	1986	1324	993	795	662	611
			(104-156)	Fr	0.0006	0.0013	0.0025	0.0038	0.0050	0.0063	0.0076	0.0082
				Feed (ipm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	95	RPM	5806	2903	1452	968	726	581	484	447
			(76-114)	Fr	0.0006	0.0011	0.0023	0.0034	0.0045	0.0057	0.0068	0.0074
				Feed (ipm)	3.3	3.3	3.3	3.3	3.3	3.3	3.3	3.3
	GRAY CAST IRONS	$\begin{gathered} \leq 220 \mathrm{Bhn} \\ \text { or } \\ \leq 19 \mathrm{HRc} \end{gathered}$	250	RPM	15280	7640	3820	2547	1910	1528	1273	1175
			(200-300)	Fr	0.0016	0.0031	0.0063	0.0094	0.0126	0.0157	0.0188	0.0204
				Feed (ipm)	24.0	24.0	24.0	24.0	24.0	24.0	24.0	24.0
	DUCTILE CAST IRONS	$\begin{gathered} \leq 260 \mathrm{Bhn} \\ \text { or } \\ \leq 26 \mathrm{HRc} \end{gathered}$	220	RPM	13446	6723	3362	2241	1681	1345	1121	1034
			(176-264)	Fr	0.0015	0.0030	0.0059	0.0089	0.0119	0.0149	0.0178	0.0193
				Feed (ipm)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0

			$\begin{gathered} \text { Vc } \\ (\mathbf{s f m}) \end{gathered}$		DC - in							
	Fractional	Hardness			1/16	1/8	1/4	3/8	1/2	5/8	3/4	13/16
N	ALUMINUM ALLOYS (WROUGHT) 2024, 6061, 7075	$\begin{gathered} \leq 150 \text { Bhn } \\ \text { or } \\ \leq 88 \mathrm{HRb} \end{gathered}$	475	RPM	29032	14516	7258	4839	3629	2903	2419	2233
			(380-570)	Fr	0.0016	0.0031	0.0062	0.0093	0.0124	0.0155	0.0186	0.0202
				Feed (ipm)	45.0	45.0	45.0	45.0	45.0	45.0	45.0	45.0
	ALUMINUM ALLOYS (CAST) A356, A380, 390	$\begin{gathered} \leq 140 \mathrm{Bhn} \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	380	RPM	23226	11613	5806	3871	2903	2323	1935	1787
			(304-456)	Fr	0.0014	0.0028	0.0055	0.0083	0.0110	0.0138	0.0165	0.0179
				Feed (ipm)	32.0	32.0	32.0	32.0	32.0	32.0	32.0	32.0
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6AI2Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \text { Bhn } \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	175	RPM	10696	5348	2674	1783	1337	1070	891	823
			(140-210)	Fr	0.0007	0.0014	0.0028	0.0042	0.0055	0.0069	0.0083	0.0090
				Feed (ipm)	7.4	7.4	7.4	7.4	7.4	7.4	7.4	7.4
		$\begin{gathered} \leq 350 \mathrm{Bhn} \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	130	RPM	7946	3973	1986	1324	993	795	662	611
			(104-156)	Fr	0.0006	0.0013	0.0025	0.0038	0.0050	0.0063	0.0076	0.0082
				Feed (ipm)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	70	RPM	4278	2139	1070	713	535	428	357	329
			(56-84)	Fr	0.0005	0.0009	0.0019	0.0028	0.0037	0.0047	0.0056	0.0061
				Feed (ipm)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
H	Alloy Steels 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{gathered} \leq 450 \text { Bhn } \\ \text { or } \\ \leq 48 \mathrm{HRc} \end{gathered}$	95	RPM	5806	2903	1452	968	726	581	484	447
			(76-114)	Fr	0.0008	0.0016	0.0031	0.0047	0.0062	0.0078	0.0093	0.0101
				Feed (ipm)	4.5	4.5	4.5	4.5	4.5	4.5	4.5	4.5
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{gathered} \leq 475 \text { Bhn } \\ \text { or } \\ \leq 50 \mathrm{HRc} \end{gathered}$	80	RPM	4890	2445	1222	815	611	489	407	376
			(64-96)	Fr	0.0007	0.0014	0.0029	0.0043	0.0057	0.0072	0.0086	0.0093
				Feed (ipm)	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5

reduce rates when material is harder than listed, when drilling conditions are not optimum, or coolant is not available
rates shown are for drilling into a flat surface and should be lowered using the reducion multiplier when the workpiece is angled or curved
reduce rates 10 to 20 percent when using drills without internal coolant
always use the shortest overhang possible
longer drills may require a spot drill operation to avoid walking on entry
internal coolant required in ISO S and M material groups or when drilling depth exceeds 3xD
Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
$\mathrm{rpm}=\mathrm{Vc} \times 3.82 / \mathrm{DC}$
$i p m=\operatorname{Fr} \times \mathrm{rpm}$
speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

	reduction multiplier	
angle $^{\circ}$	speed x	feed x
up to 30	1.0	0.6
over 30	0.7	0.4

METRIC

	Series 146U, 136U Metric	Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{mm}) \\ \hline \end{gathered}$		DC•mm							
					1.5	3	6	8	10	12	16	20
	CARBON STEELS 1018, 1040, 1080, 1090, 10L50, 1140, 1212, 12L15, 1525, 1536	$\begin{gathered} \leq 175 \mathrm{Bhn} \\ \text { or } \\ \leq 7 \mathrm{HRc} \end{gathered}$	87	RPM	18419	9209	4605	3454	2763	2302	1727	1381
			(69-104)	Fr	0.037	0.074	0.149	0.199	0.248	0.298	0.397	0.496
				Feed (mm/min)	686	686	686	686	686	686	686	686
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	78	RPM	16480	8240	4120	3090	2472	2060	1545	1236
			(62-93)	Fr	0.032	0.065	0.129	0.173	0.216	0.259	0.345	0.432
				Feed (mm/min)	533	533	533	533	533	533	533	533
		$\begin{gathered} \leq 425 \text { Bhn } \\ \text { or } \\ \leq 45 \mathrm{HRc} \end{gathered}$	44	RPM	9371	4686	2343	1757	1406	1171	879	703
			(35-53)	Fr	0.027	0.054	0.108	0.145	0.181	0.217	0.289	0.361
				Feed (mm/min)	254	254	254	254	254	254	254	254
	ALLOY STEELS 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	67	RPM	14218	7109	3555	2666	2133	1777	1333	1066
P			(54-80)	Fr	0.036	0.071	0.143	0.191	0.238	0.286	0.381	0.476
				Feed (mm/min)	508	508	508	508	508	508	508	508
		$\begin{gathered} \leq 375 \mathrm{Bhn} \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	41	RPM	8725	4362	2181	1636	1309	1091	818	654
			(33-49)	Fr	0.032	0.064	0.128	0.171	0.213	0.256	0.342	0.427
				Feed (mm/min)	279	279	279	279	279	279	279	279
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 200 \text { Bhn } \\ & \text { or } \\ & \leq 13 \mathrm{HRc} \end{aligned}$	38	RPM	8078	4039	2020	1515	1212	1010	757	606
			(30-46)	Fr	0.030	0.060	0.119	0.159	0.199	0.239	0.319	0.398
				Feed (mm/min)	241	241	241	241	241	241	241	241
		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	27	RPM	5816	2908	1454	1091	872	727	545	436
			(22-33)	Fr	0.013	0.026	0.052	0.070	0.087	0.105	0.140	0.175
				Feed (mm/min)	76	76	76	76	76	76	76	76
M	STAINLESS STEELS (FREE MACHINING) 303, 416, 420F, 430F, 440F	$\begin{gathered} \leq 185 \text { Bhn } \\ \text { or } \\ \leq 9 \mathrm{HRc} \end{gathered}$	81	RPM	17126	8563	4282	3211	2569	2141	1606	1284
			(65-97)	Fr	0.019	0.039	0.077	0.103	0.129	0.154	0.206	0.257
				Feed (mm/min)	330	330	330	330	330	330	330	330
		$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	52	RPM	10987	5493	2747	2060	1648	1373	1030	824
			(41-62)	Fr	0.015	0.030	0.060	0.080	0.100	0.120	0.160	0.200
				Feed (mm/min)	165	165	165	165	165	165	165	165
	STAINLESS STEELS (DIFFICULT) 304, 316, 321, 13-8 PH, 15-5PH, 17-4 PH, Custom 450	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	40	RPM	8402	4201	2100	1575	1260	1050	788	630
			(32-48)	Fr	0.015	0.030	0.060	0.081	0.101	0.121	0.161	0.202
				Feed (mm/min)	127	127	127	127	127	127	127	127
		$\begin{gathered} \leq 375 \text { Bhn } \\ \text { or } \\ \leq 40 \mathrm{HRc} \end{gathered}$	29	RPM	6140	3070	1535	1151	921	767	576	460
			(23-35)	Fr	0.014	0.027	0.055	0.073	0.091	0.109	0.146	0.182
				Feed (mm/min)	84	84	84	84	84	84	84	84
K	GRAY CAST IRONS	$\begin{aligned} & \leq 220 \text { Bhn } \\ & \text { or } \\ & \leq 19 \mathrm{HRc} \end{aligned}$	76	RPM	16157	8078	4039	3029	2424	2020	1515	1212
			(61-91)	Fr	0.038	0.075	0.151	0.201	0.252	0.302	0.402	0.503
				Feed (mm/min)	610	610	610	610	610	610	610	610
	DUCTILE CAST IRONS	$\begin{gathered} \leq 260 \mathrm{Bhn} \\ \text { or } \\ \leq 26 \mathrm{HRc} \end{gathered}$	67	RPM	14218	7109	3555	2666	2133	1777	1333	1066
			(54-80)	Fr	0.036	0.071	0.143	0.191	0.238	0.286	0.381	0.476
				Feed (mm/min)	508	508	508	508	508	508	508	508
											ntinued	ext pag

	Series 146U, 136U Metric	Hardness	$\begin{gathered} \mathrm{Vc} \\ (\mathrm{~m} / \mathrm{mm}) \end{gathered}$		DC - mm							
					1.5	3	6	8	10	12	16	20
N	ALUMINUM ALLOYS (WROUGHT) 2024, 6061, 7075	$\begin{aligned} & \leq 150 \text { Bhn } \\ & \text { or } \\ & \leq 88 \mathrm{HRb} \end{aligned}$	145	RPM	30698	15349	7675	5756	4605	3837	2878	2302
			(116-174)	Fr	0.037	0.074	0.149	0.199	0.248	0.298	0.397	0.496
				Feed (mm/min)	1143	1143	1143	1143	1143	1143	1143	1143
	ALUMINUM ALLOYS (CAST) A356, A380, 390	$\begin{gathered} \leq 140 \text { Bhn } \\ \text { or } \\ \leq 3 \mathrm{HRc} \end{gathered}$	116	RPM	24559	12279	6140	4605	3684	3070	2302	1842
			(93-139)	Fr	0.033	0.066	0.132	0.177	0.221	0.265	0.353	0.441
				Feed (mm/min)	813	813	813	813	813	813	813	813
S	TITANIUM ALLOYS Pure Titanium, Ti6AI4V, Ti6A12Sn4Zr2Mo, Ti4AI4Mo2Sn0.5Si, Ti-6AI4V	$\begin{gathered} \leq 275 \mathrm{Bhn} \\ \text { or } \\ \leq 28 \mathrm{HRc} \end{gathered}$	53	RPM	11310	5655	2827	2121	1696	1414	1060	848
			(43-64)	Fr	0.017	0.033	0.066	0.089	0.111	0.133	0.177	0.222
				Feed (mm/min)	188	188	188	188	188	188	188	188
		$\begin{gathered} \leq 350 \text { Bhn } \\ \text { or } \\ \leq 38 \mathrm{HRc} \end{gathered}$	40	RPM	8402	4201	2100	1575	1260	1050	788	630
			(32-48)	Fr	0.015	0.030	0.060	0.081	0.101	0.121	0.161	0.202
				Feed (mm/min)	127	127	127	127	127	127	127	127
		$\begin{aligned} & \leq 440 \text { Bhn } \\ & \text { or } \\ & \leq 47 \mathrm{HRc} \end{aligned}$	21	RPM	4524	2262	1131	848	679	565	424	339
			(17-26)	Fr	0.011	0.022	0.045	0.060	0.075	0.090	0.120	0.150
				Feed (mm/min)	51	51	51	51	51	51	51	51
H	Alloy Steels 4140, 4150, 4320, 5120, 5150, 8630, 86L20, 50100	$\begin{aligned} & \leq 450 \text { Bhn } \\ & \text { or } \\ & \leq 48 \mathrm{HRc} \end{aligned}$	29	RPM	6140	3070	1535	1151	921	767	576	460
			(23-35)	Fr	0.019	0.037	0.074	0.099	0.124	0.149	0.199	0.248
				Feed (mm/min)	114	114	114	114	114	114	114	114
	TOOL STEELS A2, D2, H13, L2, M2, P20, S7, T15, W2	$\begin{aligned} & \leq 475 \mathrm{Bhn} \\ & \quad \text { or } \\ & \leq 50 \mathrm{HRc} \end{aligned}$	24	RPM	5170	2585	1293	969	776	646	485	388
			(20-29)	Fr	0.017	0.034	0.069	0.092	0.115	0.138	0.183	0.229
				Feed (mm/min)	89	89	89	89	89	89	89	89

reduce rates when material is harder than listed, when drilling conditions are not optimum, or coolant is not available
rates shown are for drilling into a flat surface and should be lowered using the reducion multiplier when the workpiece is angled or curved
reduce rates 10 to 20 percent when using drills without internal coolant
always use the shortest overhang possible
longer drills may require a spot drill operation to avoid walking on entry
internal coolant required in ISO S and M material groups or when drilling depth exceeds 3xD
Bhn (Brinell) HRc (Rockwell C) HRb (Rockwell B)
$\mathrm{rpm}=(\mathrm{Vc} \times 1000) /(\mathrm{DC} \times 3.14)$
$\mathrm{mm} / \mathrm{min}=\mathrm{Fr} \times \mathrm{rpm}$
speed and feed for materials harder than listed
refer to the SGS Tool Wizard ${ }^{\circledR}$ for complete technical information (www.kyocera-sgstool.com)

	reduction multiplier	
angle $^{\circ}$	speed x	feed x
up to 30	1.0	0.6
over 30	0.7	0.4

solid carbide cutting tool technology for the aerospace, metalworking, and automotive industries with manufacturing sites in the United States and United Kingdom. Our global network of Sales Representatives, Industrial Distributors, and Agents blanket the world selling into more than 60 countries.

LEADERS IN SOLID CARBIDE

TOOL TECHNOLOGY
Brand names such as Z-Carb, S-Carb ${ }^{\oplus}$, V-Carb, Hi-PerCarb ${ }^{\oplus}$, Multi-Carb have become synonymous with high performance tooling in the machining and metalworking industry.

We're proud to have pioneered some of the world's most advanced cutting technology right here on our Northeast Ohio manufacturing campus. KSPT high performance end mills, drills and routers are increasing productivity and reducing cost around the world.

EXCEEDING CUSTOMER EXPECTATIONS

As the world's manufacturing needs change, so does KSPT. It's all about the science, starting with our lab inspected substrate materials to our tool designs and coatings. Our exceptional team of researchers, engineers, and machinists are dedicated to developing the absolute best and delivering the ultimate Value at the Spindle ${ }^{\circledR}$.

- Incredible batch-to-batch consistency
- Metallurgical lab dedicated to testing and rigorous quality control
- ISO 9001:2015 Certified quality procedures
- Patented geometries that extend tool life, reduce chatter, cut cycle times, and improve part quality-even at extreme parameters
- Specialists in extreme and demanding product applications
- Comprehensive tooling services
- Experienced Field Sales Engineers who work to optimize a tool for your particular application
- Dedicated multi-lingual customer service representatives

SGS PRODUCTS ARE DISTRIBUTED BY:

Solid Carbide Tools

UNITED STATES OF AMERICA

KYOCERA SGS Precision Tools 150 Marc Drive
Cuyahoga Falls, Ohio 44223 U.S.A.
customer service -
US and Canada: (330) 686-5700
fax - US \& Canada: (800) 447-4017 international fax: (330) 686-2146 orders: sales@kyocera-sgstool.com web: www.kyocera-sgstool.com

VALUE AT THE SPINDLE

UNITED KINGDOM

KYOCERA SGS Precision Tools Europe Ltd.
10 Ashville Way
Wokingham, Berkshire
RG41 2PL England
phone: (44) 1189-795-200
fax: (44) 1189-795-295
e-mail: SalesEU@kyocera-sgstool.com
web: www.kyocera-sgstool.co.uk

JAPAN

KYOCERA Corporation
International Sales Dept.
6 Takeda Tobadono-cho,
Fushimi-ku, Kyoto 612-8501, Japan
phone: +81-75-604-3473
fax: +81-75-604-3472
web: global.kyocera.com/prdct/tool/index.html

COMMERCIAL OFFICES

EASTERN EUROPE

SINTCOM
Sintcom Tools
95 Arsenalski Blvd.
1421 Sofia, Bulgaria
phone: (359) 283-64421
fax: (359) 286-52493
e-mail: sintcom@sintcomtools.com

FRANCE

DOGA Usinage
8, Avenue Gutenberg CS 50510
78317 Maurepas Cedex - France
phone:+33130664141
e-mail: usinage-outils@doga.fr

GERMANY

KADIGO Tool Systems GmbH
Walramster. 27
65510 Idstein, Germany
phone: +4983769287238
fax: +49 83769287237
e-mail: info@kadigo-ts.com

INDIA

KYOCERA Asia Pacific India Pvt. Ltd Plot No.51, Phase-I,
Udyog Vihar Gurgaon 122016,
Haryana, India
phone: +91-124-4025022
fax: +91-124-4025001

KOREA

KYOCERA Precision Tools Korea Co., Ltd. 2LT 69BL, Namdong Industrial Estate, 638-1, Kozan-Dong, Namdong Incheon, Korea
phone: +82-32-821-8365
fax: +82-32-821-8369
web: www.kptk.co.kr/

POLAND

KYOCERA SGS Precision Tools
phone: +48 530432002
e-mail: SalesEU@kyocera-sgstool.com

SPAIN

KYOCERA SGS Precision Tools IBERICA
e-mail: SalesEU@kyocera-sgstool.com

THAILAND

KYOCERA Asia Pacific (Thailand) Co., Ltd.
1 Capital Work Place Building
7th Floor, Soi Chamchan, Sukhumvit
55 Road, Klongton Nua, Wattana,
Bangkok 10110, Thailand
phone: +66-2-030-6688
fax: +66-2-030-6600

SINGAPORE

KYOCERA Asia Pacific Pte. Ltd.
298 Tiong Bahru Road, \#13-03/05 Central Plaza, Singapore 168730
phone: +65-6373-6700
fax: +65-6271-0600
web: asia.kyocera.com/products/cuttingtools/
index.html

CHINA

KYOCERA (China) Sales \& Trading Corporation Room 140, Building A3, Daning Central Square, No. 700 Wanrong Road,
Zhabei District, Shanghai, 200072,
P.R. China
phone: +86-21-3660-7711
fax: +86-21-568-6200

