THE NEW VALUE FRONTIER

High efficient cutter with double sided round insert

MRW

High efficient cutter with double sided round insert

The MRW radius cutter lowers cutting costs Flat lock structure Waved cutting edge design

High efficient cutter with double sided round insert

MRW

The MRW radius cutter lowers cutting costs

The new cutter lowers cutting costs and increases efficiency due to economical 8-edges per insert. Combining sharpness and cutting edge strength to this geometry makes it applicabale to a wide variety of applicaton by improving the milling performances. The double-sided inserts improve milling in a wide variety of materials.

Low cutting force chipbreaker

Sharp cutting edge

Holds the insert firmly and prevents rotation of the insert during machining and provides stable machining.

Waved cutting edge design 3

Maximum axial rake 12° lowers cutting forces equivalent to positive type inserts.

Workpiece: 1.4301, Vc = 120 m/min, fz = 0.2 mm/t, ap x ae = 1 x 40 mm,

Wide range of applications from steel to difficult-to-cut materials

CA6535: CVD

For Ni-base heat resistant alloy and martensitic stainless steel

PR1535: PVD

For titanium alloy and precipitation hardened stainless steel

Workpiece	Recommended insert grade	Recommended chipbreaker			
Carbon steel / Alloy steel / Die steel	PR1525	GM, SM, GH			
Gray cast iron / Nodular cast iron	PR1510	GH, GM			
Martensitic stainless steel	CA6535				
Austenitic stainless steel	DD1C2C				
Precipitation hardened stainless steel	PR1000	SM, GM			
Ni-base heat-resistant alloy	CA6535				
Titanium alloy	PR1535				

Grades for difficult-to-cut materials

Stable cutting prevents insert fracturing for highly efficient machining

- For Ni-base heat resistant alloy and martensitic stainless steel
- High heat resistance and wear resistance with CVD coating
- Improved stability due to thin film coating technology
- CA6535

- For titanium alloy and precipitation hardened stainless steel
- Improved stability due to thin film coating technology
- Stabilized milling operation and long tool life with MEGACOAT NANO coating technology

PR1535

MEGACOAT NANO Layer structure

Comparison of tool life

Martensitic stainless steel

Cutting conditions: Vc = 300m/min, ap = 2.0 mm, fz = 0.2 mm/t, WET

1st recommendation SM chipbreaker

MRW face mill (with coolant hole)

Toolholder dimension

	I	Description	ailability	of Inserts		Dimension (mm)									Rake A	ngle (°)	Coolant Hole	brawing	eight(kg)	Max. Revolution (min ⁻¹)		
			A	No.	٢٤	ØD	ØD1	Ød	Ød1	Ød2	Н	E	a	b	S	A.R.	R.R.			×		
	MRW	050R-12-5T-M	•	5		50	40		10											0.3	16.000	
		050R-12-6T-M	•	6	1	50	40		10	11	40	21		10.4						0.3	10,000	
		063R-12-6T-M	•	6	1	0	(0)	22	10		40	21	0.3	10.4					Fig 1	0.6	14.000	
		063R-12-7T-M	•	7		03	60		19							. 120	10 50		Fig. I	0.6	14,000	
		080R-12-6T-M	•	6	0	00	70	72	20	12		24	-	12.4	0.0	+12	-15.5			1.1	12 000	
		080R-12-8T-M	•	8	1	00	70	2/	20	15	50	24	/	12.4						1.1	12,000	
		100R-12-7T-M	•	7	1	100	70		NC		50	20		14.4	1				Fin 2	1.5	10.000	
ij		100R-12-9T-M	•	9	1	100	/8	32	40	-		30	ð	14.4					Fig.2	1.4	10,000	
Met	MRW	063R-16-5T-M	•	5		0	(0)	22	10	11	40	21	()	10.4						0.5	12.000	
		063R-16-6T-M	•	6	1	03	60	22	19		40	21	0.3	10.4					Fig 1	0.5	12,800	
		080R-16-6T-M	•	6	1	00	70	77	20	12		24	-	12.4	1				Fig. I	1.1	11.000	
		080R-16-7T-M	•	7		80	70	27	20	13	50	24		12.4		. 110	16.50			1.0	11,000	
		100R-16-6T-M	•	6		100	70		NC		50	20		14.4	0.0	+11	-10.5	Yes		1.4	0.000	
		100R-16-8T-M	•	8	1	100	/8	32	40			30	ð	14.4					Fig.2	1.3	7,000	
		125R-16-8T-M	•	8	1	125		40		-	0	22		16.4						2.6		
		125R-16-10T-M	•	10	1	125	89	40	22		03	33	9	10.4						2.5	8,200	
	MRW	080R-12-6T	0	6		80	70	25.4	20	13		27	6	9.5					Fig 1	1.2	12 000	
		080R-12-8T	0	8	6	00	/0	25.4	20	15	50		Ű	,,,	6.0	+12°	-15.5°		119.1	1.1	12,000	
		100R-12-7T	0	7	-	100	78	31.75	46	-		34	8	12.7					Fig.2	1.5	10,600	
		100R-12-9T		9																1.4		
Ъđ	MKW	080R-16-61		6	-	80	70	25.4	20	13		27	6	9.5					Fig.1	1.1	11,000	
		100R-16-6T		6	-						50									1.1		
		100R-16-8T	$\overline{0}$	8	8	100	78	31.75	46			34	8	12.7	8.0	+11°	-16.5°			1.4	9,600	
		125R-16-8T	Ō	8	1	125				-		20		45.0					Fig.2	2.6		
		125R-16-10T	0	10	1	125	89	38.1	55		63	38	10	15.9						2.6	8,560	

Spare parts and applicable inserts

Description	Clamp screw	Wre	ench	Anti-seize compound	Mounting bolt	Applicable inserts
		DTPM-15	TTP-20	TANK I		
MRW 050R-12 063R-12	SB-4085TRP	DTP!	M-15		HH10x30	00111120
080R-12 100R-12		for insert clamp 3.5 Nm	1	MP-1	HH12x35 -	KOMU12
MRW 063R-16	SB-50140TRP	TTP	P-20		HH10x30	
080R-16		Recommended torque		MP-1	HH12x35	ROMU16
100R-16 125R-16		for insert clamp 4.5 Nm	1		-	

Standard item

- Caution with Max. Revolution
 When running an endmill or a cutter at the maximum revolution, the insert or cutter may be damaged by centrifugal force.
- Coat Anti-seize Compound (MP-1) thinly on portion of taper and thread when insert is fixed.

• S is Maxmum ap. For more details, see page 7.

MRW end mill (with coolant hole)

Toolholder dimension

			oility	serts			Dimensi	on (mm)			Rake a	ngle (°)	e ut	ing	Max. Revolution
	D	escription	Availat	No. of ir	re	ØD	Ød	L	l	S	A.R. (MAX)	R.R.	Coola	Draw	(min ⁻¹)
	MRW	32-532-12-3T	•	3		32	32	140	40			-20°		Fig. 1	22,000
rical)		40-532-12-4T	•	4	6	40		160	40	6.0	+12°	-16.5°	Yes	Fig. 2	18,800
(Cylind		50-S42-12-5T	•	5		50	42	170	40			-15.5°		Fig. 2	16,000
ndard	MRW	40-532-16-3T	•	3		40	32	160	40			-18°			17,200
Sta		50-S42-16-4T	•	4	8	50	42	170	40	8.0	+11°	-16.5°	Yes	Fig. 2	14,800
		63-S42-16-5T	٠	5		63	42	170	50			-16.5°			12,800
	MRW	32-S32-12-2T-200	•	2		32	32	200	40			-20°		Fig. 1	22,000
drical)		40-532-12-3T-200	•	3	6	40		200	40	6.0	+12°	-16.5°	Yes	Fia. 2	18,800
t (Cylin		50-S42-12-4T-300	•	4		50	42	300	40			-15.5°		riy. z	16,000
g shan	MRW	40-S32-16-2T-200	•	2		40	32	200	40			-18°			17,200
Long		50-S42-16-3T-300	•	3	8	50	47	300	40	8.0	+11°	-16.5°	Yes	Fig. 2	14,800
		63-S42-16-4T-300	•	4		63	72	300	50			-16.5°			12,800
	MRW	32-W32-12-3T	•	3		32	32	102	40			-20°		Fig. 3	22,000
(uol		40-W32-12-4T	•	4	6	40		100	40	6.0	+12°	-16.5°	Yes	Fig 4	18,800
l (Welc		50-W40-12-5T	•	5		50	40	110	40			-15.5°		119.4	16,000
andarc	MRW	40-W32-16-3T	•	3		40	32	100	40			-18°			17,200
21		50-W40-16-4T	•	4	8	50	40	110	40	8.0	+11°	-16.5°	Yes	Fig. 4	14,800
		63-W40-16-5T	•	5		63	-10	120	50			-16.5°			12,800

•: Available

Spare parts and applicable inserts

Description		Clamp Screw	Wre	ench	Anti-seize Compound	Applicable Inserts	
	·		DTPM-15	TTP-20	True,		
MRW	□□□-12	SB-4085TRP	DTP Recommended torque for insert clamp 3.5 Nm	M-15	MP-1	ROMU12	
MRW	□□□-16	SB-50140TRP	TTF Recommended torque for insert clamp 4.5 Nm	2-20	MP-1	ROMU16	

- Caution with Max. Revolution
 When running an endmill or a cutter at the maximum revolution, the insert or cutter may be damaged by centrifugal force.
- Coat Anti-seize Compound (MP-1) thinly on portion of taper and thread when insert is fixed.
- S is Maxmum ap. For more details, see page 7.

Inserts

			Carbon steel / Allov ste	el						+					
Classification of usage			Die steel							<u> </u>					
				-1			-			^					
			Austenitic stainless ste	ei 					*	v					
		M	Martensitic stainless st	eel					☆			*			ge
			Precipitation hardened st		teel				*						nce Pa
★ : עקי	Roughing / 1st choice Roughing / 2nd choice	v	Gray cast iron								*				leferel
In case	hardness is under 45 HRC	ĸ	Nodular cast iron								*				olderF
			Ni-base heat resistant alloy				☆			*			able H		
		S	Titanium alloy		·				*		☆				Applic
		Н	Hard materials							☆					
											[I		
	Insert	Description		Dimension (mm)			MEGACUAI NANU		ANO	CVD	coated ca	rbide			
				ØA	T	Ød	W	٢٤	PR1535	PR1525	PR1510	CA6535			
		ROMU	1204M0ER-GM	12	4.75	4.6	11.8	6	•	•	•	•			
			1605M0ER-GM	16	5.48	6.2	15.8	8	•	•	•	•			
General purpose	I'm OH														
		ROMU	1204M0ER-SM	12	4.75	4.6	11.8	6	•	•		•			00
															P3 P4
Low cutting force			1605M0ER-SM	16	5.48	6.2	15.8	8	٠	•		•			
		ROMU	1204M0ER-GH	12	4.75	4.6	11.8	6		•	•				
Tough edge (Heavy milling)			1605M0ER-GH	16	5.48	6.2	15.8	8		•	•				

How to mount an insert

Be sure to remove dust and chips from the insert mounting pocket. 1.

- Fig.1 Wrench Clamp screw
- Apply anti-seize compound on portion of taper and thread of clamp screw. Attach the screw to 2. the front end of the wrench. While lightly pressing the insert against the constraint surfaces, put the screw into the hole of the insert and tighten. (See Fig. 1)

After tightening the screw, make sure that there is no clearance between the insert seat surface

and the bearing surface of the holder and between the insert side surfaces and the constraint

- Wrench and clamp screws are "Torx Plus". Fig. 2 wrench is for MRW-12. 3.
 - Fig. 3 wrench is for MRW-16.
 - For recommended torque, see page 4 and 5.

Case studies

12Cr steel

4.

Turbine blade

CA6535

Competitor A

Positive type

Vc = 270 m/min, fz = 0.278 mm/tap = 0.5~1.0 mm, ae = max. 35 mm, dry, MRW050R-12-6T-M (6 inserts), ROMU1204M0ER-SM (CA6535)

1.2x increased machining efficiency

MRW improved machining efficiency 1.2 times with same tool life compared to Competitor A. MRW has a cost advantage due to double sided inserts.

12Cr steel

Turbine blade Vc = 250 m/min, fz = 0.16 mm/t ap = 2.0 mm, ae = 5 x 30 mm, wet, MRW050R-12-5T-M (5 inserts), ROMU1204M0ER-5M (CA6535)	Same or longer tool life
CA6535	Stable machining
Competitor B Positive type	Unstable machining

MRW showed less damage on the cutting edge with reduced cutting noise. MRW has equal or longer tool life and cost advantage due to double sided inserts. • : Available

Recommended cutting conditions

	Recom	mended chinhreaker (fz	mm/t)	Recommended insert grade (Vc m/min)						
Workpiece material	Rec for RO	commended feed rate (standard va MU12: ap = 3 mm, ROMU16: ap =	lue) : 4 mm		CVD coated carbide					
	GM	SM	GH	PR1525	PR1510	PR1535	CA6535			
Carbon steel	★ 0.1~0.2~0.3	☆ 0.06~0.15~0.2	☆ 0.15~0.3~0.35	★ 120~180~250	-	-	-			
Alloy steel	★ 0.1~0.2~0.3	☆ 0.06~0.15~0.2	☆ 0.15~0.3~0.35	★ 100~160~220	-	-	-			
Die steel	★ 0.1~0.15~0.25	☆ 0.06~0.12~0.2	☆ 0.15~0.2~0.3	★ 80~140~180	-	-	-			
Austenitic stainless steel	☆ 0.1~0.15~0.2	★ 0.06~0.12~0.2	-	☆ 100~160~200	-	★ 100~160~200	-			
Martensitic stainless steel	★ 0.1~0.15~0.2	★ 0.06~0.12~0.2	-	-	-	∽ 150~200~250	★ 180~240~300			
Precipitation hardened stainless steel	★ 0.1~0.15~0.2	☆ 0.06~0.12~0.2	-	-	-	★ 90~120~150	-			
Gray cast iron	★ 0.1~0.2~0.3	-	☆ 0.15~0.3~0.35	-	★ 120~180~250	-	-			
Nodular cast iron	★ 0.1~0.15~0.25	-	☆ 0.15~0.2~0.3	-	★ 100~150~200	-	-			
Ni-base heat resistant alloy	★ 0.1~0.12~0.15	☆ 0.06~0.1~0.15	-	-	-	☆ 20~30~50	★ 20~30~50			
Titanium alloy	☆ 0.1~0.12~0.15	★ 0.06~0.1~0.15	-	-	☆ 30~50~70	★ 40~60~80	-			

* Machining with coolant is recommended for Ni-base Heat Resistant Alloy and Titanium Alloy.

* Recommended feed rate is the reference value when ap is re/2 (3mm for ROMU12, 4mm for ROMU16). For lower feed rates than the above conditions, the conversion factor in the following table is recommended.

Conversion factor for feed per tooth by depth of cut (ap)

Incort	an (recommended)	2n (m2v)	Conversion factor for feed per tooth								
insert	ap (recommended)	ap (IIIax)	ap = 0.5 mm	ap = 1 mm	ap = 2 mm	ap = 3 mm	ap = 4 mm				
ROMU12 type	3 mm or less	6 mm	2.1	1.5	1.1	1.0 Standard	_				
ROMU16 type	4 mm or less	8mm	2.4	1.7	1.3	1.1	1.0 Standard				

* Example (ROMU12 type, Carbon Steel, GM chipbreaker, ap=1mm)

* Recommended feed/tooth: 0.2mm/t (standard value for Carbon Steel / GM chipbreaker) x 1.5 (Conversion factor for ROMU12 / ap=1mm)=0.3mm/t

* Recommended ap: 3mm or less for ROMU12, 4mm or less for ROMU16

Corner R shape during processing

Insert	ap (max)	Х	Y
ROMU12 type	6 mm	3 mm	0.1 mm
ROMU16 type	8 mm	4 mm	0.1 mm

Corner R shape during processing with MRW (see Fig.) * When machining with larger ap than recommended ap (X), there is a gap (Y) between the workpiece corner and insert corner R (re). * The above figure is an estimation. There is a ± 0.2 mm variation depending on the cutting conditions.

Application

Contouring

Plunging / Profiling

Gap between insert corner R

 \star : 1st recommendation \ddagger : 2nd recommendation

MRX

- . Economical positive round inserts with 6 usable cutting edges
- Low cutting force with helical cutting edge design
- CA6535 and PR1535 insert grades available for difficult-to-cut material
- . R4, R5, R6 and R8 radius sizes available

