

High feed and large depth of cut milling

MFH Boost

High feed end mills with cutting dia. available from ø 22 and up to 2.5 mm depth of cut

Excellent performance in a wide range of applications, including automotive parts, difficult-to-cut materials, and molds

High feed and large depth of cut milling

MFH Boost

New addition to the MFH Series - High feed plus large D.O.C. for greater milling capabilities Excellent performance in a wide range of applications, including automotive parts, difficultto-cut materials, and molds

High feed milling with large depth of cut capabilities

A small 04 size insert (4-edge, double-sided insert) supports depths of cut up to 2.5 mm with cutting dia. available from ø 22 mm.

Achieves high efficiency machining in various shouldering, slotting, helical milling, and ramping applications.

Vc = 150 m/min, ae = 12.5 mm (ae/DCX = 50%), C50, dry, ø 25, overhang length 60 mm, BT50

New value with 2.5 mm max. depth of cut

Provides a better alternative to conventional **90° end mills** (Roughing to medium-finishing)

Automotive parts

General steel machining

- Increased productivity with large D.O.C. machining
- High reliability in unstable machining environments
 Long overhang length and better clamping rigidity
 Stable machining with low rigidity machines
- High-efficiency ramping
 Large ramping angle (Small dia. ø25mm: 3°)
 Dramatic efficiency improvement when ramping in pockets
- Longer tool life with high-efficiency machining
- 2 Provides a greater solution than **conventional high feed cutters**

General parts/mold (High roughing/facing)

General parts, pressing and die casting

- Higher productivity with large D.O.C.
- Long tool life and improved efficiency through the reduction of tool paths

Reduced machining time when machining workpieces with large variations in machining margins

Longer tool life with high-efficiency machining

*MFH Mini/Harrier recommended for contouring with small depth of cut and high feed

Solutions for machining difficult-to-cut materials

Aircraft/energy industry parts

Difficult-to-cut materials such as titanium alloy and stainless steel machining

- High feed rates increase productivity
- Long tool life through the reduction of tool paths
- Good combination with heat-resistant grade PR1535 provides long tool life and stable machining

Improving productivity and reducing machining costs

Available for a variety of machining applications and environments

Solutions for 90° end mills (Rough to medium-finish machining)

High feed rates dramatically improve machining efficiency

High efficiency and good tool life

Machining efficiency and cutting edge condition comparison (Internal evaluation)

Cutting edge condition after 100 min machining

Vc = 150 m/min, ae = 12.5 mm, dry, 42CrMo4, ø 25 (1 Insert) BT50

High stability in unstable machining environment

Chatter resistance comparison (Internal evaluation)

High efficiency and stable machining designs

Kyocera's original technology

Convex cutting edge design reduces impact when entering workpiece

Cutting force when entering workpiece (Internal evaluation)

Vc = 150 m/min, ap = 2.0 mm, ae = 25 mm, fz = 0.7 mm/t, dry, C50, ø 50 (1 Insert), BT50

Better solution than conventional high feed cutters

Large D.O.C. dramatically improves machining efficiency

High efficiency and good tool life

Cutting adda condition ofter 100 min machining

Machining efficiency and cutting edge condition comparison (Internal evaluation)

cutting	euget	onunion		mininaci	innig	
MFH B	oost			Competitor	B High feed	l type
ap = 1.6 n	nm, fz =	0.6 mm/t	i	ap = 0.8 mm,	, fz = 0.6 mm,	/t
		Terra Ter		-	ALC: NO	55.
NOT STATE	(age)	in the last	-	-15		155
Tool life	0.08	MFH Boo	st	Machi	ning efficie	ncy x2
		Competit	or B	Good cut	ting eage o	condition
(m	0.06	A	fter machin	ing 100 min		
ar (n	0.04					
ik we	0.02				After machinin	ng 100 min
Flan	0.00					
	0.00	500	1,000	1,500	2,000	2,500
			Metal re	moval volum	e (cc) Eff	ficiency

Vc = 150 m/min, ae = 12.5 mm, dry, 42CrMo4, ø 25 (1 Insert), BT50

Excellent wall accuracy

Video ■※約□

Machining efficiency and wall accuracy comparison (Internal evaluation)

Pocketing (Depth 12mm)

MFH Boost

Competitor B High feed type ø 25 (4 Inserts)

ap = 1.5 mm × 8 passes $ap = 0.8 \text{ mm} \times 15 \text{ passes}$ O = 115 cc/min O = 81 cc/minCutting conditions: Vc = 200 m/min, ae = 12.5 mm, fz = 0.8 mm/t, dry, C50, BT50

Superior wall accuracy

Wiper on outer periphery

Reduction of wall level variation in multi-pass machining

Solutions for machining difficult-to-cut materials

Dramatic improvement in machining efficiency with titanium alloy, stainless steel machining, etc.

Machining efficiency comparison (Internal evaluation)

Titanium alloy pocketing (Depth 6 mm)

Vc = 50 m/min, ae = 12.5 mm (ae/DCX = 50%), Ramping angle 3°, Ti-6Al-4V, wet, ø 25 (3 inserts), BT50

Toolholder dimensions

			lity				Dimensio	ons (mm)			Rake angle				
Shank		Description	Availabi	No. of inserts	DCX	DC	DCON	LH	LF	APMX	A.R.	Coolant hole	Shape	Weight (kg)	Max. revolution (min ⁻¹)
	MFH	25-S25-04-2T	•	2	25	14	25		140					0.5	12 700
Standard		25-S25-04-3T	•	3	25	14	25	60	140	25	100	Vee	Fig. 1	0.5	12,700
(Straight)		32-S32-04-4T	•	4	22	21	22	70	150	2.5	-10	res	Fig. I	0.8	11 200
		32-S32-04-5T	•	5	32	21	32	/0	150					0.8	11,200
	MFH	22-S20-04-2T	•	2	22	11	20	30	130					0.3	13,600
		28-S25-04-3T	•	3	20	17	25	40	140]				0.5	12 000
		28-S25-04-4T	•	4	20		25	40	140					0.5	12,000
Over Size (Straight)		35-S32-04-4T	•	4	25	24				2.5	-10°	Yes	Fig.2	0.8	10 700
(Struight)		35-S32-04-5T	•	F	22	24	22	50	150					0.8	10,700
		40-S32-04-5T	•		40	20	32	00	150					0.9	10.000
		40-S32-04-6T	•	6	40	29								0.9	10,000
	MFH	25-W25-04-2T	•	2	75	14	25	60	117					0.4	12 700
		25-W25-04-3T	•	3	23	14	25	00	117				Eig 2	0.4	12,700
Standard		32-W32-04-4T	٠	4	22	21		70	121	25	10°	Vor	rig.5	0.7	11 200
(Weldon)		32-W32-04-5T	•	5	32	21	22	/0	121	2.5	-10	165		0.7	11,200
		40-W32-04-5T	•	,	40	20	32	50	111				Eig 4	0.7	10.000
		40-W32-04-6T	•	6	40	29		00	111				rig.4	0.7	10,000
	MFH	25-S25-04-2T-180	•	2	25	14		100	100				Eig 5	0.6	12 700
		25-S25-04-3T-180	•	2	25	14	25		100				rig.5	0.6	12,700
Long Shank		28-S25-04-3T-200	•))	28	17		40		25	100	Vac	Fig.6	0.7	12,000
(Straight)		32-S32-04-4T-200	٠	4	32	21		120	200	2.5	-10	162	Fig.5	1.1	11,200
		35-S32-04-4T-200	•	4	35	24	32	50					Fig 6	1.1	10,700
		40-S32-04-5T-250		5	40	29		00	250				rig.o	1.5	10,000
Caution with r	nax. revo	lution													• : Available

Caution with max. revolution

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on back cover. Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Toolholder dimensions

	pility								Dime	ensions (mm)					Rake angle			
Bore dia.		Description	Availabi	NO. OF inserts	DCX	DC	DCSFMS	DCB	DCCB ₁	DCCB ₂	LF	CBDP	KDP	ĸww	АРМХ	A.R.	hole	(kg)	Max. revolution (min ⁻¹)
la de Cares	MFH	080R-04-8T	•	8		(0)	76	21.75	26	17	()	22	0.0	12.7	25	100	Vec	1.6	7 100
inch spec		080R-04-10T	•	10	80	09	/0	31./5	20	17	03	32	8.0	12.7	2.5	-10	res	1.6	7,100
	MFH	040R-04-5T-M	•	5	40	20	20	16	15	0	40	10	E C	0.4				0.2	10.000
		040R-04-6T-M	•	6	40	29	00	10	61	9	40	19	5.0	0.4				0.2	10,000
		050R-04-6T-M	•	0	50	20												0.4	0.000
		050R-04-7T-M	•	7	50	39	47											0.4	9,000
		052R-04-6T-M	•	6	57	41	47	22	19	11		21	63	10.4				0.5	8 800
Matric Spac		052R-04-7T-M	•	7	52	1		22	10		50	21	0.5	10.4	25	-10°	Vec	0.4	0,000
metric spec		063R-04-7T-M	•	,							50				2.5	-10	165	0.8	
		063R-04-9T-M	•	9	63	52	60											0.8	8 000
		063R-04-7T-27M	•	7		52	00											0.8	0,000
		063R-04-9T-27M	•	9				77	20	12		24	7.0	12.4				0.7	
		080R-04-8T-M	•	8	80	69	76	2/	20	CI	63	24	7.0	12.4				1.8	7 100
		080R-04-10T-M	•	10	00	07	70				60							1.7	7,100
Caution with	n max. re	evolution																	• : Available

Caution with max. revolution Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on back cover. Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Parts

		Parts	
	Clamp screw	Wrench	Anti-seize compound
Description		- M	
MEU 04	SB-3575TRP	DTPM-10	P-37
MFH04		Recommended torque for insert clamp 2.0N · n	n

MFH Boost Modular

Toolholder dimensions

		lity					D	imensions	(mm)				Rake angle		
	Description	Availabi	No. of inserts	DCX	DC	DCSFMS	DCON	OAL	LF	CRKS	н	APMX	A.R.	Coolant hole	Max. revolution (min ⁻¹)
MFH	22-M10-04-2T	٠	2	22	11	18.7	10.5	48	30	M10XP1.5	15				13,600
	25-M12-04-2T	•	2	75	14										12 700
	25-M12-04-3T	•	,	25	14	222	12.5	56	25	M12VD1 75	10				12,700
	28-M12-04-3T	•	5	28	17	25	12.5	00		WIIZAF 1.75	19				12 000
	28-M12-04-4T	•		20	17										12,000
	32-M16-04-4T	•	4	27	21										11 200
	32-M16-04-5T	•	5	32	21							2.5	-10°	Yes	11,200
	35-M16-04-4T	•	4	35	24										10 700
	35-M16-04-5T	•	5	27	24	20	17	67	40	M16VD2 0	24				10,700
	40-M16-04-5T	•		40	20	30		02	40	MITOAF 2.0	24				10.000
	40-M16-04-6T	•	6	40	29										10,000
	42-M16-04-5T	•	5	12	21										0.800
	42-M16-04-6T	•	6	72	1										9,000

• : Available

Caution with max. revolution

Set the number of revolutions per minute within the recommended cutting speed specified by the workpiece on back cover. Do not use the end mill or cutter at the maximum revolution or higher since the centrifugal force may cause chips and parts to scatter even under no load.

Applicable inserts

Shape	Description	cription Dimensions (mm) MEGACOAT NANO							0	CVD Coating
		W1	S	D1	INSL	RE	PR1535	PR1525	PR1510	CA6535
4-edge, Double-sided insert	LOMU 040410ER-GM	9.1	4.4	4.1	14.5	1.0	•	•	•	•
										• : Available

Insert grade:

PR1535 For steel machining (Stable machining oriented), titanium alloy, austenitic/precipitation hardening stainless steel, etc.

PR1525 For steel machining (General use)

PR1510 For cast iron machining

CA6535 For martensitic stainless steel, Ni-base heat resistant alloy, etc.

Dimension

Desci	rintion	ability		Di	imensions (mm)		Coolant hole	Arbor (Two-face clamping)	Applicable end mill (Head)
best	nption	Avail	LF	BD	DCONWS	CRKS		CCMS	Apprecise end min (nedd)
BT30K-	M10-45	•	45	18.7	10.5	M10×P1.5	Vor	PT20	MFHM10
	M12-45	•	45	23	12.5	M12×P1.75	les	0010	MFHM12
BT40K-	M10-60	•	60	18.7	10.5	M10×P1.5			MFHM10
	M12-55	•	55	23	12.5	M12×P1.75	Yes	BT40	MFHM12
	M16-65	•	65	30	17	M16×P2.0			MFHM16

• : Available

Harrier

ø160

Actual end mill depth

		Applica	able end mill (Head)		Actual end mill depth(mm)
Arbor des	cription	Description	Cutting dia.(mm)	Dimension(mm)	
		Description	DC	LF	LUX
BT30K-	M10-45	MFH22-M10	22	30	39.2
	M12 45	MFH25-M12	25	35	42.8
	WI12-45	MFH28-M12	28	35	45.5
BT40K-	M10-60	MFH22-M10	22	30	44.5
	M12 55	MFH25-M12	25	35	44.6
_	IVI 12-33	MFH28-M12	28	35	47.6
		MFH32-M16	32	40	51.2
	M16 65	MFH35-M16	35	40	60.2
	WI10-05	MFH40-M16	40	40	64.0
		MFH42-M16	42	40	64.0

MFH Series Large lineup for various applications and machining environments

Recommended cutting conditions \star 1st recommendation \Leftrightarrow 2nd recommendation

			Toolholder descript	ion and feed (fz: mm/t)		Recommended inse	rt grade (Vc: m/min)		
Chipbreaker	w	/orkpiece	20(mm)	MEH 04		MEGACOAT NANO		CVD Coating	
			ap(mm)	мгп04	PR1535	PR1525	PR1510	CA6535	
			≤ 0.5	0.20 - 0.80 - 1.30					
			≤ 1.0	0.20 - 0.70 - 1.10		+			
		(~ 280HB)	≤ 1.5	0.20 - 0.60 - 0.80	120 – 160 – 220	120 - 160 - 220	-	-	
	Carbon steel		≤ 2.0	0.20 - 0.40 - 0.70					
			≤ 2.5	0.20 - 0.30 - 0.50					
	Allowetaal		≤ 0.5	0.20 - 0.75 - 1.20		*			
	Alloy steel	(250UP)	≤ 1.0	0.20 - 0.65 - 1.00	100 – 150 – 200	100 - 150 - 200			
		(~ JJUUCC ~)	≤ 1.5	0.20 - 0.00 - 0.55	(Dry machining	(Dry machining	_	_	
			≤ 2.0	0.20 - 0.25 - 0.35	recommended)	recommended)			
			< 0.5	0.20 - 0.60 - 1.10					
			≤ 1.0	0.20 - 0.50 - 0.90	☆	*			
		(~ 40HRC)	≤ 1.5	0.20 - 0.40 - 0.65	80 – 120 – 160	80 – 120 – 160	-	_	
			≤ 2.0	0.20 - 0.30 - 0.55	recommended)	(Dry machining recommended)			
			≤ 2.5	0.20 - 0.25 - 0.35					
			≤ 0.5	0.10 - 0.30 - 0.50					
			≤ 1.0	0.10 - 0.25 - 0.40		★ 60 - 100 - 130			
	Mold steel	(40 ~ 50HRC)	≤ 1.5	0.10 - 0.20 - 0.30	-	(Dry machining	-	-	
			≤ 2.0			recommended)			
			≤ 2.5						
			≤ 0.5	0.10 - 0.20 - 0.40		+			
			≤ 1.0	0.10 - 0.15 - 0.25		50 – 70 – 100			
		(SU ~ SSHKC)	≤ 1.5	-	-	(Dry machining	-	-	
			≤ 2.0	-		recommended)			
			< 0.5	0.20 - 0.60 - 1.00					
			< 1.0	0.20 - 0.50 - 0.90					
	Austenitic stainless	steel	≤ 1.5	0.20 - 0.45 - 0.60	★ 100 140 190	100 140 190	_	_	
			≤ 2.0	0.20 - 0.30 - 0.50	100 - 140 - 180	100 - 140 - 180			
C 14			≤ 2.5	0.20 - 0.25 - 0.40					
GM			≤ 0.5	0.20 - 0.60 - 1.00					
			≤ 1.0	0.20 - 0.50 - 0.90))				
	Martensitic stainles	s steel	≤ 1.5	0.20 - 0.45 - 0.60	100 - 150 - 200	-	-	150 - 200 - 300	
			≤ 2.0	0.20 - 0.30 - 0.50					
			≤ 2.5	0.20 - 0.25 - 0.40					
			≤ 0.5	0.10 - 0.30 - 0.50					
	D		≤ 1.0	0.10 - 0.25 - 0.45	*				
	Precipitation hardene	d stainless steel	≤ 1.5	0.10 - 0.15 - 0.25	90 - 120 - 150	-	-	-	
			≤ 2.0						
			≤ 2.5	0.20 - 0.80 - 1.30					
			<10	0.20 - 0.70 - 1.10					
	Gray cast iron		≤ 1.5	0.20 - 0.60 - 0.80		_	★	_	
			≤ 2.0	0.20 - 0.40 - 0.70			120 - 160 - 220		
			≤ 2.5	0.20 - 0.30 - 0.50					
			≤ 0.5	0.20 - 0.60 - 1.00					
			≤ 1.0	0.20 - 0.50 - 0.90			<u>↓</u>		
	Nodular cast iron		≤ 1.5	0.20 - 0.40 - 0.70	_	-	100 - 150 - 200	-	
	Ni-base heat-resist		≤ 2.0	0.20 - 0.30 - 0.60					
			≤ 2.5	0.20 - 0.25 - 0.40					
			≤ 0.5	0.10 - 0.30 - 0.45					
			≤ 1.0	0.10 - 0.25 - 0.40	☆			*	
		ant alloy	≤ 1.5	0.10 - 0.15 - 0.20	20 - 30 - 50	-	-	20 - 30 - 50	
			≤ 2.0						
			∠.2 ≥	0.10 - 0.20 0.50					
			<u>≥ 0.3</u> < 1.0	0.10 - 0.50 - 0.50					
	Titanium allov		< 1 5	0.10 - 0.25 - 0.45	*	_	_	_	
	intaniuni anoy		< 2.0	0.10 0.15 0.25	40 - 60 - 80	_	-	-	
			< 2.5						
L				1	1	1	1	1	

• The number in **bold font** is recommended starting conditions. Adjust the cutting speed and the feed rate within the above conditions according to the actual machining situation.

Machining with coolant is recommended for precipitation hardened stainless steel, Ni-base heat-resistant alloy and titanium alloy.
 Wet machining with coolant is recommended for precipitation hardened stainless steel, Ni-base heat-resistant alloy and titanium alloy.
 Wet machining with BT30 or equivalent, feed rate should be reduced to 80% or less of recommended cutting conditions. Slotting is not recommended for slotting.
 Center through air is recommended for face mill type.
 Slotting or pocketing are not recommended for face mill type.

For face mill type cutters, it is recommended that width of cut should be set to 75% or less of the cutting diameter.
 It is recommended to set the long shank to 75% or less of the recommended conditions for both ap and feed.

Approximate programming radius adjustment

Shape	Programmable R (mm)	Over machined radius portion (mm)	Non-machined portion (mm)
	1.5	0	1.42
And the second s	2.0	0	1.24
Maching parties Non-machined region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region Non-machined Region R	3.0 (Recommended)	0	0.87
	3.5	0.06	0.69

Ramping tips

- Ramping angle should be under RMPX
- Reduce recommended feed rate in cutting conditions above by 70%

• When ramping both forth and back direction alternately, set the maximum ramping angle RMPX to 50%.

Ramping reference table

Description	Cutter dia. DCX (mm)	22	25	28	32	35	40	42	50	52	63	80
MEH 04	Max. ramping angle RMPX	3.9°	3.0°	2.4°	2.0°	1.7°	1.4°	1.3°	1.0°	1.0°	0.8°	0.6°
мгп04	tan RMPX	0.068	0.052	0.042	0.035	0.029	0.024	0.022	0.018	0.017	0.013	0.010

Helical milling tips

• For helical milling, use between min. cutting dia. and max. cutting dia.

Under min. machining dia.

Description	Min. cutting dia. (mm)	Max. cutting dia. (mm)
MFH04	2×DCX-11	2×DCX-2

 Maximum ramping depth per cycle to be under maximum D.O.C. ap (2.5 mm)

 Use climb milling. (Refer to the above figure)
 Feed rates should be reduced to 50% of recommended cutting conditions · Use caution to eliminate incidences caused by producing long chips

		(mm)	(mm)
	MFH04	0.6	DCX-12
It is recommended to reduce feed by 25% of recommendation until the center core is removed			

• Axial feed rate recommendation per revolution is $f \le 0.2$ mm/rev

Plunging

Insert description	Maximum width of cut (ae)
LOMU04 Type	5.0 mm

• Reduce feed rate to fz \leq 0.2mm/t when plunging

Fast, strong, and efficient

(User evaluation)

